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Abstract
Presently, punctuation restoration models are evalu-
ated almost solely on well-structured, scripted corpora.
On the other hand, real-world ASR systems and post-
processing pipelines typically apply towards spontaneous
speech with significant irregularities, stutters, and devi-
ations from perfect grammar. To address this discrep-
ancy, we introduce SponSpeech, a punctuation restora-
tion dataset derived from informal speech sources, which
includes punctuation and casing information. In ad-
dition to publicly releasing the dataset, we contribute
a filtering pipeline that can be used to generate more
data. Our filtering pipeline examines the quality of
both speech audio and transcription text. We also care-
fully construct a “challenging” test set, aimed at eval-
uating models’ ability to leverage audio information
to predict otherwise grammatically ambiguous punctua-
tion. SponSpeech is available at https://github.
com/GitHubAccountAnonymous/PR, along with
all code for dataset building and model runs.

Index Terms— Punctuation restoration, speech
recognition post-processing, dataset, corpus

1. Introduction
Researchers in the field of punctuation restoration widely
recognize the task’s value: By supplying punctuation in-
formation to automatic speech recognition (ASR) sys-
tems’ raw, unpunctuated output, we aid execution of
downstream tasks like machine translation, natural lan-
guage understanding, and much more. The field has made
great progress in recent history, from proposals of recur-
rent neural networks [1] and end-to-end approaches [2] to
adaptations of transformers [3] and time-delay neural net-
works [4]. However, an emerging problem is the singular
type of datasets used for evaluating English punctuation
restoration models.

In the English language domain, research on text-
only punctuation models [5, 6, 7, 8] almost always use the
IWSLT 2011 and 2012 datasets, both derived from TED
talks’ transcriptions. In the other category, recent models
considering acoustics and text [2, 3, 4, 9] has very often
used the MuST-C dataset [10], also derived from TED

talks’ audio and transcriptions. Each of these models pre-
sented steady improvements in performance and indeed
advanced the field. The dataset on which their insights
are based, however, is limited in scope. TED talks are
scripted monologues that are carefully practiced by the
presenters before formal delivery. Samples in the IWSLT
and MuST-C datasets therefore exhibit high uniformity in
style. Audio and transcriptions derived from this source
have high quality but lack many natural traits of typical
speech. For example, stutters, hesitations, and other spo-
ken imperfections should optimally present themselves
often in punctuation restoration data in order for trained
models to robustly handle them. Although some conver-
sations between the TED host and presenters are avail-
able in small numbers, the IWSLT and MuST-C datasets
predominantly feature flawless, formal monologues.

To address this limitation in data for training and
evaluating punctuation restoration models, we create the
SponSpeech dataset. We focus on extracting sponta-
neous, informal speech, which more accurately reflects
natural conversations, rather than formal speeches that
rarely occur in daily life. We take podcasts as our dataset
source, since they offer stylistic diversity. They con-
tain not only stints of discussion on focused subjects, but
also interactive dialogue between multiple speakers. Im-
portantly, spoken imperfections are preserved in podcast
conversations.

In addition to releasing SponSpeech as a punctuation
restoration dataset of varied style, our contribution has
another intention: to emphasize utterances with punctua-
tion ambiguity. A significant value of performing punctu-
ation restoration is to improve readability of the text [11].
Partially, this involves eliminating ambiguity. For exam-
ple, the text

i have eight boys

has punctuation ambiguity, since “I have eight boys.”
suggests that the speaker has eight sons, whereas “I have
eight, boys.” suggests that the speaker is indicating to
their boys that they possess eight objects. On the other
hand, punctuation restoration has much less value in a
text like

i have an apple

https://www.recognitiontechnologies.com/techreport/RTI-20240917-01.pdf
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Table 1: Summary of speech datasets suitable for punctu-
ation restoration. Fisher corpus refers to the punctuated
section used by [14].

Dataset Hours Style

SponSpeech 665 Podcasts
Libriheavy [15] 56389 Reading

NSC [16] 2170 Reading
LibriTTS [17] 585 Reading

MuST-C v1 [10] 438 Monologues
Fisher [18] 432 Telephone

Switchboard-1 [19] 260 Telephone

as the only way to apply punctuation is: “I have an ap-
ple.” There is no punctuation ambiguity in this latter case.

In building our dataset, we aim to include a greater
number of utterances with punctuation ambiguity. In par-
ticular, we create two test sets, one with slightly more
ambiguous cases than the other. Such a dataset will bet-
ter evaluate models’ ability to leverage audio patterns to
resolve punctuation ambiguities. As a simple example, a
longer pause in certain contexts may distinguish the ab-
sence or presence of a comma.

2. Related Works
To train punctuation restoration models, only corpora
with punctuation information are useful. This is particu-
larly noteworthy, because many ASR datasets’ transcrip-
tions are all lower case with no punctuation, and hence
not suitable for punctuation restoration. In the case of
text-only models, most written text are acceptable, but
this paper focuses on the domain that considers both text
and acoustics. Prior work has convincingly confirmed the
added value of incorporating acoustics information [12],
and certainly ASR systems can be inexpensively stream-
lined to output audio embeddings for punctuation pur-
poses [4].

The IWSLT pure-text dataset has approximately 2.4
million words, which corresponds to a rough estimate of
267 hours of “average” speech [13]. For some of the
most recognized datasets with speech audio and that have
punctuation information, see the summary provided in
Table 1.

The largest dataset, Libriheavy, impressively con-
tains over 50000 hours of audio and punctuation/casing
information. A dataset of book recordings, its speech
content has a scripted and uniformly flawless style. Sim-
ilarly, NSC and LibriTTS involve readers verbalizing
prior written texts. As discussed, MuST-C comprises for-
mal monologues in the form of TED talks.

Among the most popularly used datasets, only the
Fisher and Switchboard-1 corpora feature spontaneous
speech. Unfortunately, they require a paid membership
to the Linguistic Data Consortium or a non-member li-
censing fee to access. We release a reasonably abun-
dant 665 hours of speech data with punctuated transcripts

Table 2: Statistics on each subset of SponSpeech.

Subset Hours Utterances Videos

train 469 147209 1736
dev 79 25253 277
test 58 17697 205

test-amb 60 16473 397

under a Creative Commons Attribution-NonCommercial
4.0 International (CC BY-NC 4.0) license, allowing all
researchers to make use of our resource for free.

3. SponSpeech
The SponSpeech dataset is released with four standard
subsets in order to facilitate reproducibility of future re-
search: train, dev (validation), test, and test-amb. The last
subset, test-amb, is an evaluation set with slightly more
cases of punctuation ambiguity. We expect models to per-
form slightly worse on test-amb than on the ordinary test
set, as resolving ambiguities presents an extra challenge.
Special insights must be drawn from acoustic informa-
tion when, grammatically, multiple versions of punctua-
tion are possible. At the same time, we do not desire for
test-amb to drastically differ from utterance population
norms. A dataset and its subsets should accurately reflect
the state of the entire represented population [20], a fact
we strived to balance with creating a challenging, second
evaluation set.

Table 2 lists statistics on each subset. We source
our data from YouTube videos published under Creative
Commons Attribution 4.0 International Licenses, rather
than standard YouTube licenses. This respects all upload-
ers’ rights, while allowing our creation of SponSpeech as
an adapted work with appropriate attribution. The fourth
column reports the number of videos involved in each
subset. Videos are sliced to create utterances.

The train, dev, test, and test-amb sets make up ap-
proximately 70%, 12%, 9%, and 9% of the entire dataset,
respectively. The overall minimum, average, and max-
imum utterance durations are 1.6 s, 11.6 s, and 45.0 s,
respectively.

The following subsections describe the dataset cre-
ation process.

3.1. Data Source

Each YouTube video has a unique video ID. To obtain an
initial pool of YouTube video IDs, we specify a filter code
in the search query URL (in this case, sp=EgQoATAB)
that only allows videos with a Creative Commons license
and subtitles to be returned. The resulting list of videos
merely serves as candidates for inclusion in SponSpeech,
with careful evaluation still needed for each video to en-
sure criteria for desirable properties are met. Then, a se-
ries of five filters are applied to eliminate unacceptable
candidates.



We use the yt-dlp tool to download videos’ subti-
tle and audio content, as well as metadata.

3.2. Filters

Figure 1 provides an illustration of the filtering pipeline.
Each filter acts on the pool of candidate video IDs. Since
text can be more computationally efficient to analyze than
audio, the first three filters use text as the basis of evalua-
tion. The fourth and fifth filters evaluate audio.

First, the subtitle availability filter simply detects
whether manually-uploaded English transcriptions exist
for each candidate video. YouTube’s system automat-
ically generates subtitles, but we do not wish for ASR
output text to be used as ground-truth text labels in Spon-
Speech. Instead, this filter requires the content creator to
have written and supplied the video’s transcription them-
self.

Second, the subtitle quality filter assesses four cri-
teria evaluating the content of subtitles. Subtitle files fol-
low a standard format, with a header block of metadata to
begin, then roughly alternating lines of timestamp ranges
and the corresponding text. As a side note, subtitle files
provide, by default, accurate alignments to serve as the
basis for later extraction of individual utterances. These
timestamps are either provided manually by the uploader
alongside the transcription, or by YouTube’s alignment
algorithm, depending on the uploader’s choice.

1. Number of lines. Each video’s subtitle file is re-
quired to have at least 20 lines, a heuristic selected
on the basis of manual examination and erring on
the side of caution. Each subtitle file has a header
block with metadata. As such, videos with sub-
stantial content most often have, at the very mini-
mum, 20 subtitle file lines.

2. Timestamp formatting. Each video’s subtitle file
must contain timestamps that follow a standard
format common to the vast majority of videos. Un-
fortunately, a small number have highly irregular
formatting, such as those with mistakenly littered
HTML tags. These are difficult to consistently in-
terpret and hence filtered out.

3. Amount of punctuation. Some videos’ subtitle
files are poorly written and unexplicably have very
few punctuation marks. This presents a problem
for our dataset, which is designed for punctuation
restoration. As a result, this criteria checks for a
minimum of one punctuation mark for every ten
subtitle lines.

4. Text repetitiveness. Some videos’ subtitle files
have much overlapping text between different
lines. In other words, the same phrase may ap-
pear repetitively in error, with the correspond-
ing audio not featuring any repetition. Each line
has a distinct corresponding timestamp range; the
same text appearing on multiple lines may indi-
cate alignment issues. Videos with text repetitive-

ness of this type (and not real repetitiveness) are
filtered out.

Third, the subtitle appropriateness filter eliminates
videos with inappropriate language. The types of in-
appropriate language targeted include toxicity, severe
toxicity, identity attack, threat, and sexual explicitness.
While these samples do exist in the natural population
of speech data, we do not wish for such language to be
further propagated through a public dataset. We pass
each video’s subtitles through the Detoxify model in
Python’s detoxify library [21, 22]. With probability
outputs describing each inappropriateness category, we
eliminate videos exceeding a threshold.

Fourth, the music filter ensures that only speech-
type audio content is accepted into the dataset. Even
though the search keyword “podcast” was applied to ob-
tain candidate videos, YouTube contains both speech-
dominant and music-dominant content. We use a
wav2vec 2.0-based speech/music classifier to determine
the amount of speech, music, and simultaneous content
in each video [23, 24]. Those with more music than
speech, measured based on a probability heuristic, are
filtered out. Note that not all videos with music present
should be eliminated, because, for example, speech over-
layed on top of quieter music has significant validity as
an utterance to train a punctuation restoration model.

Fifth and last, the language filter allows only En-
glish content to pass through, for the scope of our in-
tended dataset. A Whisper-based language identification
model evaluates each video’s speech audio [25, 26].

We deemed it acceptable to involve community-
trained machine learning models, albeit ones with con-
vincing test set results and fine-tuned from established
foundation models, because any performance drawbacks
could be compensated by using highly cautious threshold
values for filtering decisions. We always select threshold
values (including in sub-filter criteria) conservatively to
favor eliminating unproblematic videos, rather than fail-
ing to eliminate problematic ones. In other words, the
aim is to maximize recall and somewhat overlook preci-
sion, in the context of a positive class being videos for
elimination. The rationale is that we can easily source
more candidate videos, but we must be careful not to al-
low unwanted samples to enter the dataset.

Videos that pass all filters then form utterances in
SponSpeech.

3.3. Creating Utterances

Utterances are the unit basis of data samples in Spon-
Speech. For each video that passed through all filters, se-
lect sentence delimiters are used to split the video into
utterances. As it has become standard in punctuation
restoration research to consider only the dominant punc-
tuation marks full stop (.), comma (,), and question mark
(?), we use full stops and question marks as split points.

Utterances naturally end in terminal punctuation
marks, a standard used to create nearly all ASR datasets
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Fig. 1: Filtering pipeline used to create SponSpeech. Blue indicates text-based filter, and yellow indicates audio-based
filter, also shown by the bottom-right icons. Sub-boxes within the subtitle quality and appropriateness filters are the
evaluation criteria used.

[15]. However, full stops and question marks are also
made available in the middle of utterances, so that punc-
tuation restoration models can be trained robustly on
SponSpeech.

The result of this step is a pool of utterances with
audio extracted using YouTube-provided alignment in-
formation. Concretely, utterances are .wav files with
single-channel audio of 16 kHz sample rate. The pool
is split into the four data subsets: train, dev, test, and test-
amb. As previously mentioned, test-amb is a special test
set with an increased number of utterances with punctu-
ation ambiguity. The following subsection describes the
creation of test-amb.

3.4. Creating Ambiguous Test Set

To create test-amb, the main consideration is determining
whether each utterance’s text contains punctuation am-
biguity, effectively forming a binary classification task.
The positive class is “has punctuation ambiguity”, and
the negative class is “has no punctuation ambiguity.” For
the meaning and an example of punctuation ambiguity,
please refer to Section 1.

The framework with which we determine punctua-
tion ambiguity is ELECTRA [27], fine-tuned on a small
number of samples. To accomplish this, we manually la-
bel 100 samples for training and 20 samples for valida-
tion, with a few examples shown in Table 3. Each sam-
ple’s input is unpunctuated utterance text, and we call “la-
bel A” the list of all correct versions of punctuation, sep-
arated by newline characters. “Label B” is binary, with 0
being “has no punctuation ambiguity” (i.e. only one item
in label A) and 1 being “has punctuation ambiguity” (i.e.
more than one item in label A).

ELECTRA utilizes a generator-discriminator archi-
tecture. We leverage both components for binary classifi-
cation as follows:

1. Generator tuning for text generation. The input,
unpunctuated utterance text and label A are used
to fine-tune ELECTRA’s generator for text genera-
tion. The model is prompted to generate all correct
versions of punctuation based on the given text.

Table 3: Data samples used to fine-tune ELECTRA for
creating test-amb. Label A is manually created and lists
all correct versions of punctuation for the input. Label
B is binary and indicates whether there is punctuation
ambiguity.

Input Label A Label B

and i liked the fact... And I liked the fact... 0

... go there but you... ... go there, but you... 1... go there. But you...

... then education is... ... then education is... 1... then, education is...

This step’s task is more complex than ultimately
needed, since only a final binary prediction is used
to create test-amb. However, this precursor step
is designed to guide the foundation model towards
reasoning about punctuation. Directly predicting
label B without this step may obfuscate whether
the task relates to punctuation at all.

2. Generator for ambiguity classification. After
performing step 1, the generator is used to obtain
last hidden layer embeddings for the input text.
Along with label B, these embeddings are used
to train a multilayer perceptron (MLP) for binary
classification. The results of this step – predictions
about whether utterances contain punctuation am-
biguity – are directly used in the creation of test-
amb.

3. Discriminator for ambiguity classification.
Similar to step 2, the discriminator’s last hidden
layer embeddings for the input text and label B
are used to train a MLP for binary classification.
Since the discriminator is not designed for
text generation, its usage does not involve the
precursor fine-tuning step as in the generator.

Based on optimal performance on the validation set,
a weight of α = 0.8 is assigned to the generator’s sig-



Table 4: Precision (P), recall (R), and F1 score (F1) achieved by models trained on MuST-C and tested on SponSpeech.

Subset Model Full Stop Comma Question Overall
P R F1 P R F1 P R F1 P R F1

test EfficientPunct 76.9 84.4 80.5 54.6 76.1 63.6 70.5 79.7 74.8 63.2 79.7 70.5
BERT 75.5 85.3 80.1 60.7 69.3 64.7 69.4 80.0 74.3 67.1 76.3 71.4

test-amb EfficientPunct 76.6 80.6 78.6 55.1 76.2 63.9 67.4 77.7 72.2 63.1 78.1 69.8
BERT 75.9 81.7 78.7 61.0 69.6 65.0 66.9 79.2 72.6 67.2 75.0 70.9

Table 5: Precision (P), recall (R), and F1 score (F1) achieved by models trained on SponSpeech and tested on MuST-C.
The test set used is the same as in [3, 4].

Model Full Stop Comma Question Overall
P R F1 P R F1 P R F1 P R F1

EfficientPunct 79.3 81.8 80.5 64.4 76.7 70.0 82.9 77.6 80.1 70.7 78.9 74.5
BERT 82.0 76.7 79.3 69.1 65.7 67.3 85.3 73.4 78.9 75.0 70.5 72.7

moid output probabilities, and a weight of 1 − α = 0.2
is assigned to the discriminator’s. As expected, the gen-
erator, tuned with the precursor generation step, is more
useful. The weighted sum of probability values are used
for the final predictions of punctuation ambiguity on all
SponSpeech utterances. A threshold of β = 0.6 was sim-
ilarly selected based on validation, with prediction prob-
abilities p ≥ β being classified as “having punctuation
ambiguity.”

A formal evaluation of the fine-tuned models were
not deemed necessary, since the generator, discriminator,
and MLPs only needed to give a general suggestion as to
which utterances likely had punctuation ambiguity. Max-
imizing accuracy was less important, unlike with typical
machine learning tasks, since classification mistakes do
not deter the overall formation of test-amb. Moreover,
any additional samples labeled for a potential test set
would much better serve to enlarge the scant fine-tuning
and validation data subsets anyway.

In the end, test-amb is created with a greater num-
ber of utterances predicted to have punctuation ambigu-
ity. The effectiveness of this creation procedure is proven
in the following sections’ results.

4. Evaluation
To evaluate the quality of SponSpeech, we follow a pro-
cedure similar to that used for MuST-C v2 [28]. An
indication of dataset quality is achieving reasonable re-
sults when cross-testing with another dataset, i.e. (1)
training on another dataset and testing on SponSpeech,
and (2) training on SponSpeech and testing on another
dataset. We use MuST-C for this purpose, since it is cur-
rently the most frequently used multimodal (with text and
acoustics) dataset for punctuation restoration. The mod-
els picked are BERT [29] and EfficientPunct [4], which
are among the recent top-performing models in the text-
only and multimodal domains.

As shown in Table 4, both models trained on MuST-
C achieve overall F1 scores around or above 70% when
testing on SponSpeech. By comparison against within-
SponSpeech dataset results in Tables 6 and 7, MuST-C-
trained and SponSpeech tested results appear reasonable.
Namely, not training on the SponSpeech population it-
self only decreases overall F1 score on SponSpeech’s test
and test-amb sets by about 2.3% to 4.0%. The quality of
SponSpeech’s test and test-amb sets are hence signaled.
As expected, results for test-amb are lower than for the
test set, demonstrating the effectiveness of our ELEC-
TRA tuning process in creating a test set with more punc-
tuation ambiguity.

For results of training on SponSpeech and testing on
MuST-C shown in Table 5, overall F1 scores achieved
are well above 70%, demonstrating the quality of Spon-
Speech’s training and validation sets. Together, the two
sets of cross-testing results show that SponSpeech has
high quality and robustness.

5. Baselines
To initiate punctuation restoration research using Spon-
Speech, we provide several notable models’ baseline re-
sults in Table 6 for the test set and Table 7 for the test-amb
set. Training and validation are performed using Spon-
Speech’s standard data subsets. The models picked are:

• EfficientPunct, an ensemble with a time-delay
neural network to process BERT [29] and Kaldi-
derived [30] embeddings, picked for its state of the
art performance and efficiency. Considers text and
acoustics [4].

• UniPunc, an attention-based architecture with a
coordinate bootstrapper that allows for missing au-
dio. We apply the same BERT and Kaldi embed-
dings as EfficientPunct for fair comparison of the
architectures. Considers text and acoustics [3].



Table 6: Precision (P), recall (R), and F1 score (F1) achieved by models on SponSpeech’s test set.

Model Full Stop Comma Question Overall
P R F1 P R F1 P R F1 P R F1

EfficientPunct 79.3 85.6 82.3 56.9 82.6 67.4 74.0 80.4 77.0 65.2 83.8 73.3
UniPunc 70.5 83.2 76.3 46.9 75.9 58.0 71.8 71.2 71.5 55.8 78.7 65.3

BERT 82.4 82.3 82.4 66.5 75.0 70.5 76.1 77.6 76.8 73.0 78.1 75.4
GPT-4 Turbo 87.0 70.0 77.5 47.7 85.0 61.1 67.5 81.9 74.0 58.0 78.7 66.8

Table 7: Precision (P), recall (R), and F1 score (F1) achieved by models on SponSpeech’s test-amb set.

Model Full Stop Comma Question Overall
P R F1 P R F1 P R F1 P R F1

EfficientPunct 78.0 82.9 80.4 56.5 81.6 66.7 72.1 78.8 75.3 64.4 82.0 72.1
UniPunc 70.6 79.8 74.9 47.0 74.5 57.7 69.9 70.0 70.0 55.7 76.5 64.5

BERT 81.3 79.2 80.3 65.5 73.5 69.3 74.6 75.5 75.0 71.9 75.9 73.8
GPT-4 Turbo 85.5 66.8 75.0 48.8 84.3 61.8 65.8 80.0 72.2 58.4 77.0 66.4

• BERT, a bidirectional transformer-based founda-
tion language model that can be fine-tuned for a
wide variety of downstream tasks with very few
additional layers. Considers text only [29].

• GPT-4 Turbo, a generative pretrained transformer
large language model created by OpenAI, picked
due to its immense popularity in the AI commu-
nity and the public through ChatGPT and its ori-
gin model, GPT-4. Considers text only [31]. We
evaluate the zero-shot performance of this model.

The best performance for all types of punctuation
marks in both evaluation sets is dominated by BERT and
EfficientPunct.

For the test set, BERT achieves highest F1 scores
for full stops, commas, and overall, while EfficientPunct
achieves the highest for question marks. BERT’s lan-
guage modeling capabilities for punctuation restoration
outmatch all other models. Although, EfficientPunct’s
outperformance on question marks may be attributed to
the consideration of acoustics, which can often signal
question marks with rising pitch. BERT may relatively
suffer from the lack of pitch/acoustic information in this
case.

For the test-amb set, BERT achieves highest F1
scores for commas and overall, while EfficientPunct
achieves the highest for full stops and question marks.
All models performed worse on the test-amb set than on
the test set.

An important finding from the baseline results is
that the multimodal models proposed thus far fall short
of BERT, which has continually proven to be robust in
the task of punctuation restoration. Yet, experiments
on MuST-C’s highly structured TED talks have repeat-
edly shown the proposed models’ outperformance over
BERT. This highlights the importance of testing on di-
verse datasets.

6. Conclusion

This paper introduces SponSpeech, a new dataset for
punctuation restoration with spontaneous speech in the
form of podcast conversations. Many ASR datasets, espe-
cially scripted ones, lack natural tendencies in speech like
stutters, random pauses, grammatical imperfections, and
interruptions among multiple speakers. We remedy this
dearth of important speaking characteristics in datasets
by contributing SponSpeech as a public, free resource,
licensed under CC BY-NC 4.0.

Finally, we discuss some limitations and directions
for future research. It should be noted that certain punc-
tuation decisions are stylistic, and oftentimes two or more
ways of punctuating are readable, reasonable, and gram-
matically correct, all without altering the text’s intended
meaning. Such subjectivities slightly influence punctu-
ation labels, and, in turn, evaluation results. Measures
of punctuation accuracy are hence coarser than one may
initially assume. Also affected are our labeling of the
training and validation set for ELECTRA fine-tuning. Es-
pecially in cases of spontaneous speech when grammat-
ical rules are defied, flawless and objective punctuation
labeling proves even more difficult. Our classification of
whether select utterances are ambiguous may somewhat
suffer from this linguistic phenomenon.

As for potential future work, multimodal models
falling short of BERT on SponSpeech serves as strong
motivation for further research in multimodal punctua-
tion restoration models. It has been repeatedly shown that
multimodal approaches have significant advantages over
text-only models [12]. We can therefore conclude that
there exists effective, undiscovered methods of consid-
ering acoustics for punctuation restoration. Most likely
candidates involve heavily weighting a language model’s
grammatical insight, while leveraging acoustics for fine-
grained information.
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