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Abstract

Most state-of-the-art spoken language identification
models are closed-set; in other words, they can only out-
put a language label from the set of classes they were
trained on. Open-set spoken language identification sys-
tems, however, gain the ability to detect when an input
exhibits none of the original languages. In this paper,
we implement a novel approach to open-set spoken lan-
guage identification that uses MFCC and pitch features, a
TDNN model to extract meaningful feature embeddings,
confidence thresholding on softmax outputs, and LDA
and pLDA for learning to classify new unknown lan-
guages. We present a spoken language identification sys-
tem that achieves 91.76% accuracy on trained languages
and has the capability to adapt to unknown languages on
the fly. To that end, we also built the CU MultiLang
Dataset, a large and diverse multilingual speech corpus
which was used to train and evaluate our system.

Index Terms: Spoken language identification, open-set,
closed-set, MFCC, TDNN, softmax, threshold, LDA,
pLDA, dataset

1. Introduction

Spoken Language Identification is the process of deter-
mining the language being spoken from an input audio.
There are two subdivisions to the language identification
(LID) problem: open-set and closed-set. In closed-set
LID, the set of languages to identify is predefined, and for
every audio input, the “most probable” language within
the set is outputted. However in open-set LID, there is
the option to “reject” that prediction and detect when the
audio input matches none of the known languages well.

In this paper, we improve upon a modern approach
to the open-set spoken LID problem that utilizes Mel-
frequency cepstral coefficients (MFCC) and pitch fea-
tures [1] with a Time-Delay Neural Network (TDNN) [2}
3| and softmax output to reject an input audio and label it
as an “unkown” language. Our TDNN described in this
paper is architected and trained from scratch without any
pre-trained models or transfer learning.

To improve on that system, our first step was the con-
struction of the CU MultiLang dataset: an open-source
speech dataset containing 51 languages with at most 10

hours of speech data for each language with correspond-
ing transcriptions. The languages were chosen to cover a
diverse array of language families, and the samples them-
selves were randomly chosen to maximize speaker diver-
sity. We then selected 32 languages as the in-set base,
with the rest being out-of-set.

The next improvement was the addition of Lin-
ear Discriminant Analysis (LDA) and Probabilistic LDA
(pLDA) [} 14, 5] to the system architecture, which are
used to perform efficient classification of out-of-set lan-
guages. By taking the output of the TDNN when peeling
back its last two layers, the system obtains a meaningful
feature embedding we will call the “language represen-
tation vector” after which it performs LDA and pLDA to
match the input with one of the previously learned out-
of-set languages. The LDA and pLDA allow the system
to learn new languages on the fly: when encountering an
input that the system determines to be from an out-of-set
language, instead of retraining the TDNN to learn it, the
language representation vector from our diversely trained
and generalized TDNN is used it to refit our LDA and
pLDA, easily adding a new language class.

2. Related work

In “Modernizing Open-Set Speech Language Identifica-
tion” [6], Eyceoz et al. built a system that extracted
MFCC and pitch features, passed them through a TDNN
with softmax output, and achieved a 95% in-set language
classification accuracy, trained and tested on only seven
languages. A number of static confidence thresholds
were tested for the detection of out-of-set languages. Two
additional languages were designated as out-of-set lan-
guages and the system achieved an out-of-set detection
accuracy of 80.4%. Our open-set spoken LID system of
this paper improves upon the aforementioned approach.

3. The CU MultiLang Dataset

In order to build a robust and generalizable system, we
created the the CU MultiLang Dataset by pulling from
open-source datasets on OpenSLR [7]], VoxForge [S8],
VoxLingualO7 [9]], and a number of other sources to com-
pose a 51-language speech data corpus with over 400
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hours worth of samples. Each language has a selec-
tion of utterances that sum up to at most 10 hours of
speech data, with each utterance having an accompany-
ing text transcription. The individual utterances were
specifically selected in an automated fashion to maximize
speaker and dialect diversity within each language. Simi-
larly, the languages were also carefully chosen to cover a
large number of diverse language families. The dataset is
publicly available at https://www.speechdata.
com/datasets/cu_multilang

For Romance languages, the CU MultiLang
Dataset contains French of various regions from Medi-
aSpeech [10] and African Accented French Corpus [[11]],
Spanish of various regions from MediaSpeech and
Crowdsourcing Latin American Spanish Dataset [12],
and Romanian and Italian from VoxLingualO7. For
Germanic languages, it contains English from Free ST
American English Corpus [13], German from Swiss
Parliaments Corpus [14], Icelandic from Samromur [[15],
Norwegian and Swedish from VoxLingualQ7, and Dutch
from VoxForge. For Semitic languages, it contains
Arabic of various regions from MediaSpeech and He-
brew from VoxForge. For Slavic languages, it contains
Russian from Russian LibriSpeech Dataset [16], and
Ukrainian, Croatian, and Bulgarian from VoxForge.
For Indo-Iranian languages, it contains Persian from
VoxForge, Kashmiri from Kashmiri Data Corpus [17],
Pashto from VoxLingualO7, and Bengali from Large
Bengali ASR Training Dataset [18]. For other Indo-
European languages, it contains Greek and Albanian
from VoxForge, Armenian from VoxLingualO7, and
Catalan from Crowdsourced high-quality Catalan speech
Dataset [19]. For Dravidian languages, it contains
Tamil, Malayalam, and Telegu all from Crowdsourced
High-quality Multi-speaker Speech Dataset [20].
For Sino-Tibetan languages, it contains Mandarin
and Tibetan both from VoxLingualO7, and Burmese
from Crowdsourced High-quality Burmese Speech
Dataset [21]. For Austro-Tai languages, it contains Ja-
vanese from Large Javanese ASR Training Dataset [[18]]
and Iban from Iban Dataset [22]. For Altaic languages,
it contains Turkish from MediaSpeech, Japanese from
VoxLingualO7, Korean from Zeroth-Korean [23], and
Uyghur from THUYG-20 [24]. For Niger-Congo
languages, it contains Ewe, Hausa, Lingala, Yoruba,
Asante Twi, and Akuapem Twi all from BibleTTS [25]].
From VoxLingual07, it contains Hungarian and Finnish
for Finno-Ugric languages; Maori and Hawaiian for Aus-
tronesian languages; Georgian for Caucasian languages;
Nepali, Hindi, and Urdu for Indo-Aryan languages; and
Thai for Tai languages.

Within the dataset, there is one folder for each lan-
guage denoted by its ISO 639-2 code, and within a folder
there are a number of wav files and their corresponding
utterance transcription txt files sharing the same
name. The naming convention for every file follows the
format <language-code>_<source-dataset>
_<sex>_<speaker-id>_<index>.wav (or

Table 1: In-set and Out-of-set languages

In-Set Out-of-Set
Arabic Kashmiri | Akuapem Twi Romanian
Bengali Korean Albanian Ukrainian
Catalan Lingala Armenian Uyghur
English Mandarin | Asante Twi
Ewe Maori Bulgarian
French Pashto Burmese
Georgian  Russian Croatian
German Spanish Dutch
Greek Swedish | Finnish
Hausa Tamil Hebrew
Hawaiian  Telugu Iban
Hindi Thai Japanese
Hungarian Tibetan Malayalam
Icelandic =~ Turkish Nepali
Italian Urdu Norwegian
Javanese Yoruba Persian

.txt). The sex and speaker-id fields are replaced with a
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u” if unavailable.

4. Method
4.1. In-Set and Out-of-Set

Since the goal of this work was to not only identify
known languages, but also to detect, learn, and identify
unknown languages, we split our dataset into two cate-
gories: in-set and out-of-set. The CU MultiLang Dataset
was split into 32 in-set languages and 19 out-of-set lan-
guages while ensuring that both categories remained di-
verse and encompassing. See Table [I] for the in-set and
out-of-set breakdown.

4.2. Data Standardization

All utterances were standardized by batching the data into
fixed-length segments which greatly improved the stabil-
ity and speed during training. To do identify the optimal
segment length, the audio data was split into fixed-length
segments of 2, 3, 4, and 5 seconds for experimentation.
Five hours of audio were taken from each language and
the TDNN was trained for 15 epochs using a batch size
of 512. Four seconds yielded the highest validation ac-
curacy, so all utterance samples were standardized as a
series of several four-second segments.

4.3. Train and Test Sets

The training data for the TDNN is 95% of the total
duration of each in-set language with a 90/10 split for
train/validation. For the initial fit of our LDA and pLDA



on our out-of-set languages, 80% of the total duration
of each out-of-set language was used. During training,
we utilized a speaker leave-out technique where possible
(and later used left-out speakers for evaluation), in order
to ensure the system was learning language-specific fea-
tures instead of speaker-specific features.

The remaining 5% of each in-set language and 20%
of each out-of-set language was used as the test set.

4.4. Feature Extraction

Kaldi [26] was used to extract MFCC features from our
utterances. We then concatenated additional pitch in-
formation, as it proved to add meaningful information
in “Modernizing Open-Set Speech Language Identifica-
tion.” This results in a final feature embedding for each
utterance that is a series of 16-dimension vectors (one per
time slice).

4.5. System Architecture

Final feature embeddings are passed through a TDNN
which was architected and trained from scratch without
any pre-trained models or transfer learning. The TDNN
produces two outputs. The first is the output of the fi-
nal layer of the TDNN: a 32-dimension softmax output.
This TDNN output for a sample is averaged over all time-
slices to get a single 32-dimension softmax output. It is
then passed through a threshold function which observes
the softmax probabilities to determine whether the sam-
ple belongs to an in-set language or an out-of-set lan-
guage. If the sample is determined to be an in-set lan-
guage, the softmax output is used to make a language
prediction with highest probability. This was the extent of
the system in “Modernizing Open-Set Speech Language
Identification.”

The second output of the TDNN is a 256-dimension
language representation vector. This is the output of the
TDNN when peeling back its last two layers: the soft-
max layer and the 32-dimension penultimate layer. If
the language is rejected and classified as out-of-set, we
then concatenate all language representation vectors from
each time slice in the sample to preserve as much data as
we can, and pass the result through an LDA in order to
reduce the dimension of our representation vectors down
to 18, performing both dimensionality and correlation re-
duction of the features. Finally, the 18-dimension vectors
are passed through a pLDA to give us a classification of
our out-of-set language. If the pLDA classifier cannot
confidently predict the out-of-set language, then we po-
tentially have a new language to fit into our system. To
do so, we simply re-fit the LDA and pLDA components
given the new data and a new out-of-set language class
label to match it. Thus, our system can now recognize a
new language without having to undergo the heavyweight
task of retraining or fine-tuning the TDNN. See Fig. [I|for
the full architecture of our open-set spoken LID system.

Data Data standardization Feature extraction
file wav 4-second segments MFCC + pitch

Size: 18

Size: 32 Size: 256
freesna ’—D
Mo

Prediction: in-set

LDAIpLDA
refitfing

Yes
Kfs—em

Figure 1: System architecture
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5. Accessibility and Accuracy

To make sure that any 32GB memory system with a
consumer-level GPU could train, fine-tune, or perform
inference with our spoken LID system, we restricted the
entirety of our work to a machine with 30GB of memory
and a single NVIDIA Tesla K80 GPU.

5.1. TDNN Optimization and Size Reduction

We first reduced the size of the TDNN while retaining or
increasing accuracy to make training the model and using
it for inference faster.

Using the same TDNN model from “Modernizing
Open-Set Speech Language Identification,” the output di-
mension of the language representation vectors was 1500,
which spread relevant information thin and made the pro-
cess of fitting our LDA component require far too much
memory. We reduced the language representation layer
down to a size of 256, giving the model a total parameter
count of only 556,896 while also increasing in-set iden-
tification accuracy and out-of-set detection accuracy. A
primary factor for the observed accuracy improvements
was the utilization of the AdamW optimizer [27], which
improved convergence compared to the previously used
SGD optimizer.

The final TDNN model architecture was five layers
of size 256 followed by one layer of size 32. All six layers
used dilation and stride of 1, but the first three layers used
context size of 3 and the last three layers used context size
of 1. Finally, a softmax output layer was added at the end
of the TDNN model. Additionally, batch normalization
was applied after every layer to improve generalization,
and help reduce noise from other features of the audio.

5.2. Data Pipeline and Ensemble Approach

We kept a tight constraint on our data pipeline’s mem-
ory usage. Despite reducing our language representation
vectors down to size 256, we could not load all of them
at once to fit the LDA and pLDA all at once. In order
to make sure that less than 32GB of data were loaded
at any given time, the 256-length vectors were loaded in
batches, at approximately 4,000 four-second segments’
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Figure 2: LDA and pLDA ensemble architecture

worth at a time.

We then implemented an ensemble algorithm for the
LDA and pLDA layers. Ensuring that each batch of
4,000 four-second segments was well-diversified, we fit
a unique LDA and pLDA for each batch. To use this for
testing and inference, we pass a sample through all of our
LDA and pLDA pairs, taking the most common predic-
tion with mean confidence to be our final output. This
allowed us to circumvent the memory restrictions of fit-
ting an LDA and pLDA while keeping our data pipeline
constrained. See Fig. [2|for a diagram of the data pipeline
and ensemble architecture.

6. Results
6.1. In-set Accuracy

On in-set languages, our system achieves 91.76% accu-
racy via the TDNN model. When observing top-N accu-
racies, we found that TDNN achieves 94.20% top-2 accu-
racy, 95.05% top-3 accuracy, 95.80% top-4 accuracy, and
96.18% top-5 accuracy. Observing the confusion matrix
for in-set languages in Fig. [3] we can see that the TDNN
often confuses Hindi with Urdu, English with Javanese,
and Greek with Javanese.

When we consider how our system will be used with
confidence thresholding, a higher threshold results in our
system labeling fewer and fewer inputs as in-set lan-
guages. In effect, confidence thresholding ensures that
the system is more confident in its in-set labelling and
results in a higher in-set classification accuracy. Of the
inputs correctly labeled as in-set with a threshold of 0.65,
the system accurately assigns the correctly language with
98% accuracy.

6.2. Out-of-set Accuracy

On out-of-set languages, our system achieves 72.93% ac-
curacy via the LDA and pLDA layers. Observing the con-
fusion matrix for in-set languages in Fig. ] we can see
that the LDA and pLDA layers often confuse Albanian
with Ukrainian, Finnish with Armenian, and Nepali with
Romanian.

6.3. Optimal Threshold

Choosing the optimal threshold for an open-set lan-
guage identification system is difficult because there is
no threshold that fits all use cases. Depending on the user,
there are various operating conditions that constitute dif-
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Figure 3: In-set language confusion matrix
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Figure 4: Out-of-set language confusion matrix

ferent choices of confidence thresholds.

One way of choosing a threshold is to analyze our
system as a whole and thinking of the open-set spo-
ken language identification task as a binary classification
problem. We frame the question as such: is the given in-
put from an in-set language or an out-of-set language?
Fig. [5] plots miss probability, the rate of in-set sam-
ples incorrectly labeled as out-of-set, on the vertical axis
and false alarm probability, the rate of out-of-set sam-
ples incorrectly labeled as in-set, on the horizontal axis.
This DET curve [28]] thus represents the performance of
our spoken language identification system and shows the
trade-off of error types. We can report the point of equal
error rate on the DET curve: both probabilities are 19%
at a threshold of 0.65.

The second way of choosing a threshold is to mea-
sure total accuracy of our system when using various
confidence thresholds. For all samples in our test split,
how often did the system label an input with the cor-
rect language class? When using a threshold of 0, the
system achieves 34.49% because all samples are labeled
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with in-set languages, meaning all out-of-set samples are
mislabeled. When using a threshold of 1, the system
achieves 45.53% accuracy because all samples are la-
beled with out-of-set languages, meaning all in-set sam-
ples are being mislabeled. With a threshold of 0.81, the
system achieves its maximum total accuracy of 69.80%;
thus, 0.81 may be another optimal threshold. However,
it should be noted that the total accuracy numbers are
highly reflective of the proportion of in-set and out-of-set
samples in the test split.

7. Conclusion and Future Work

The results show promise in achieving our goal of creat-
ing an accessible and robust spoken language identifica-
tion system, that can both identify known languages with
high accuracy and also recognize unknown languages.
Furthermore, the creation of the open-source CU Mul-
tiLang Dataset will hopefully prove to be useful for de-
velopers working on related spoken language problems.
We could improve our open-set spoken LID system
with a more diverse array of thresholding mechanisms.
Dynamic solutions such as having a threshold for each

language, may yield significantly improved results. Ad-
ditionally, more can be done with respect to feature ab-
straction and embedding. Further experimentation with
respect to incorporation of other spectral features and i-
vectors may help in increasing component accuracies.

Finally, to test the system in real-world scenarios, we
may build an application that allows users to interface
with the system by recording audio clips of themselves.
We would test our in-set prediction accuracy and also see
how well the application recognizes and adapts to new
out-of-set languages. The application may also provide
data that, with user permission, could be added to the CU
MultiLang dataset.
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