
Modernizing Open-Set Speech Language Identification

Recognition Technologies, Inc.
Technical Report: RTI-20220520-01

DOI: 10.13140/RG.2.2.24797.28647

Mustafa Eyceoz1, Justin Lee1, and Homayoon Beigi3

1,2Dept. of Computer Science, Columbia University, New York
3Recognition Technologies, Inc. and Columbia University, New York

1me2680@columbia.edu, 2jjl2245@columbia.edu, 3beigi@recotechnologies.com

Abstract

While most modern speech Language Identification
methods are closed-set, we want to see if they can be
modified and adapted for the open-set problem. When
switching to the open-set problem, the solution gains the
ability to reject an audio input when it fails to match
any of our known language options. We tackle the open-
set task by adapting two modern-day state-of-the-art ap-
proaches to closed-set language identification: the first
using a CRNN with attention and the second using a
TDNN. In addition to enhancing our input feature embed-
dings using MFCCs, log spectral features, and pitch, we
will be attempting two approaches to out-of-set language
detection: one using thresholds, and the other essentially
performing a verification task. We will compare both the
performance of the TDNN and the CRNN, as well as our
detection approaches.

Index Terms— Speech language identification,
open-set, closed-set, CRNN, TDNN, attention, threshold,
verification

1. Introduction
Speech Language Identification is the process of taking
audio as an input and determining what language is being
spoken, if any. There are two subsections to the language
identification problem (which will henceforth be referred
to as LID): open-set and closed-set [1]. In closed-set LID,
set of languages to identify is defined, and for every audio
input, the ”most probable” language within the set is out-
putted. In open-set LID, however, we also gain the option
to ”reject” that prediction and detect when the audio input
matches none of our known languages well. It can also
allow for identification and learning of new languages for
the system.

Today, there are a number of modern-day state-of-
the-art approaches to language identification, but almost
all of them have opted to take the closed-set approach. In
an era of data abundance, the limitations of the closed-
set solution are typically circumvented by including hun-
dreds of languages and training on thousands of hours
of data for each of them. This workaround is obviously

still not as ideal as the true open-set solution, though, as
it lacks the ability to detect and reject or learn unknown
languages, and in these cases it will unavoidably output
an incorrect prediction. Therefore, our goal is attempt to
adapt and modify these various state-of-the-art closed-set
solutions to attempt the open-set task, and see how well
they perform, as well as determine which implementation
performs the best.

2. Related Works and State of the Art
To start, we will be looking at a few of the current best-
performing closed-set solutions. Convolutional Recur-
rent Neural Networks, or CRNNs, have become increas-
ingly popular in LID over recent years. Solutions like that
of Bartz et al in 2017 [2] initially used spectrograms as in-
puts, but over a number of iterations we have seen the best
performance come from solutions like the recent 2021
paper from Mandal et al [3], which proposes the use of
a CRNN with attention, as well as using Mel-frequency
Cepstral Coefficient (MFCC) [1] features of audio sam-
ples as input.

Another classic yet still high-performing method of
both LID and general speech recognition is to use the
same MFCCs, but now use them as input for a time-delay
neural network, or TDNN. TDNN’s are capable of mod-
eling long-term context information, which is why they
are often used in various speech recognition tasks.

There is also a third method of speech LID that, ei-
ther in this paper or in future works, may be worth explor-
ing. This method actually separates the tasks of speech
recognition and language identification. First, the speech
is converted to text. While TDNNs have long been used
for speech-to-text, the current top performers for this task
are all wave2vec 2.0 [4] implementations. Once the text
has been obtained, textual LID is currently done best
using bi-directional LSTMs (long short-term memory, a
type of recurrent neural network or RNN architecture),
like the implementation by Toftrup et al [5] that builds
off an outline by Apple.

For this paper, we primarily focus on the direct
speech methods for LID, modifying both the input se-
lection and various other points of the architectures (to

https://www.recotechnologies.com
https://www.recognitiontechnologies.com/~beigi/ps/RTI-20220520-01.pdf
http://dx.doi.org/10.13140/RG.2.2.24797.28647


be touched on further in section IV. Proposed Method-
ology). It is also possible that we explore the speech-
text-LID method as well, though that may be left for a a
continuation of this work.

When looking at previous open-set work, we draw in-
spiration from both the exploration of thresholding func-
tions and curves for out-of-set language detection and re-
jection, like the work of Rebai et al [6], as well as cre-
ating deeper embeddings with linear discriminant analy-
sis (LDA) [1] transformation sets to perform verification
tasks, like with Voxceleb2 speaker verification [7].

3. Datasets
The dataset used in this research consists of audio and
text from 9 different language sources. For our in-set lan-
guages, we will be using French, Turkish, Spanish, Ko-
rean, Mandarin, English, and Russian. And for our out-
of-set languages, we will be evaluating using Javanese
and Bengali.

MediaSpeech is a dataset containing French, Turk-
ish and Spanish media speech. Originally built with the
purpose of testing Automated Speech Recognition (ASR)
systems performance, MediaSpeech contains 10 hours of
speech for each language provided. [8] Pansori-TEDxKR
is a dataset that is generated from Korean language TEDx
talks from 2010 to 2014. This corpus has about three
hours of speech from 41 speakers. [9] Primewords Chi-
nese Corpus Set 1 is a Chinese Mandarin corpus released
by Shanghai Primewords Co. Ltd. and contains 100
hours of speech. This corpus was built from smart phone
recordings of 296 native Chinese speakers and has tran-
scription accuracy of larger than 98% at a confidence
level of 95%. [10] Free ST American English Corpus is a
free American English corpus by Surfingtech. It contains
the utterances of 10 speakers with each speaker having
approximately 350 utterances. [11] Russian LibriSpeech
is a Russian dataset based on LibriVox audiobooks. It
contains approximately 98 hours of audio data. [12] Note
that each of the datasets mentioned above will be nor-
malized so that each in-set language is represented by an
equal number of hours of audio in order to prevent any
skewing in the in-set languages.

For evaluation, the first additional out-of-set lan-
guages is Javanese. The Large Javanese ASR training
data set contains approximately 185,000 utterances in Ja-
vanese and was collected by Google in collaboration with
Reykjavik University and Universitas Gadjah Mada in In-
donesia. [13] The second out-of-set language is Bengali.
The Large Bengali ASR training data set contains ap-
proximately 196,000 utterances in Bengali and contains
transcribed audio data for Bengali. [13]

4. Proposed Methodology
The two methods we will be adapting and comparing for
open-set performance are the CRNN with attention solu-
tion and the TDNN solution.

First, to obtain our feature embeddings to use as in-

put for the TDNN and CRNN, we must process the data
through a number of steps. We start by performing a dis-
crete Fourier transform on data frames to generate the
spectral estimates. From this we can obtain the log spec-
tral features. With an additional discrete cosine transform
we can obtain the MFCCs. We then concatenate the log
spectral features [1] with the MFCCs, as well as some
additional pitch information. To ensure our embeddings
have all the information needed for the task, we may also
concatenate 100 dimensional i-vectors [14]. From here,
we will then pass these embeddings through an LDA [1]
to perform both dimensionality and correlation reduction
of the features.

Once we have obtained our final feature embeddings,
we will be using them to train and compare our two mod-
els: the first being our CRNN with attention, and the sec-
ond being our TDNN. For both, our initial implementa-
tion will have a softmax output layer for language iden-
tification, as well as threshold curves and functions used
on output for out-of-set language detection and rejection.
Our second approach will be more complex. After train-
ing our softmax output, we will attempt to continue to a
deeper embedding by training an LDA transformation set,
both allowing us to treat the open-set problem as a veri-
fication task, as well as potentially giving us the ability
to add new languages without having to retrain the initial
model, instead simply using these deeper embeddings.

We will be comparing performance of the TDNN
model vs the CRNN model on both of the proposed ap-
proaches, as well as seeing which of the two approaches
generally performs better on the open-set task. We cur-
rently expect the more modern CRNN model to at least
slightly outperform the TDNN model, though we have
no expectation for which of the out-of-set detection ap-
proaches will perform better (although regardless the ver-
ification approach will provide additional functionality
over the threshold approach).

It is worth noting that there is also a chance we at-
tempt these two approaches on the word2vec 2.0 + bi-
LSTM method of LID, but that may very well be saved
for future work.

See Figure 1 for the proposed architecture for our
open-set language identification approach.

5. The Process: Data Preparation and
Feature Extraction

5.1. Data Preparation

After downloading the necessary datasets from Open
Speech and Language Resources (OpenSLR) [15], we
proceeded with data preparation so that all of the data
for each language was in the correct format and structure
for the Kaldi scripts used in feature extraction. We started
by formatting each dataset in the same way: all datasets
came with different file formats and structures; and some
came with audio data in the form of FLAC files while
others came as WAV files.

The first step in our data formatting process was to



Figure 1: Open-Set LID Exploration Architecture

convert all audio files to WAV format. WAV, also known
as Waveform Audio File Format, is the main format of
audio that is used by the Kaldi scripts, which are subse-
quently used for feature extraction. Each audio file in our
original datasets were either FLAC or WAV, so all FLAC
files were converted to WAV using ffmpeg software.

We measured the total duration of data we had for
each language and then limited each language’s data to
10 hours, as that was the minimum total duration of au-
dio files found across all languages. For some languages,
we had up to 40 hours of data, but the reason for using
an equal duration of audio files for each language was
to reduce any skewing towards certain languages when
training. This was all done using librosa, a python library
for audio analysis.

Then, the data in each language was split with an
80:20 train and test split. It’s worth noting that the split
was made based on the total duration of the audio files,
not the number of audio files present. From here, sev-
eral acoustic data files were generated. First, ’wav.scp’
files were created for each data split of each language
which contain data that maps a WAV file’s unique iden-
tifier to its file path. Then, a ’text’ file was created for
each data split of each language which contains a map of
every audio file to its text transcription. We then created
the ’corpus.txt’ files for each language which contained
every single utterance transcription from the audio files

of said language. Finally other extraneous files were cre-
ated such as ’utt2spk’ which, for our use-case, mapped a
WAV file’s unique identifier to itself since our dataset and
problem statement does not involve individual speakers.

Then, we created several files related to language
data as follows. For each language and their transcrip-
tions of the audio files, the 1000 most frequent words
were computed and saved. These 1000 most frequent
words represent the dictionary of a language and the most
significant identifiers for that language. We used these to
create a ’lexicon.txt’ for each language, which contains
all of the 1000 most frequent words with their phone tran-
scriptions. Since we could not find the necessary tools
to convert words into phones for all 9 languages, we re-
sorted to the solution of using each individual letter as
a phone, also known as graphemic transcription. One
point of concern came when working with Mandarin, in
which each character is a pictorial representation of a
word and therefore has no concept of letters. Thus, the
solution was to first convert Mandarin into Pinyin, which
is the romanticized text version of Mandarin. From here,
it was easy to split a Pinyin word into individual let-
ters. With all of the aforementioned phones, we com-
bined them with the silence phones to create ’lexicon.txt’.
Then, it was straightforward to create individual ’non-
silence phones.txt’ and ’silence phones.txt’ files which
contain the non-silent phones and silent phones respec-
tively. The silent phones are ’sil’ and ’spn’. Finally, the
’optional silence.txt’ file was created with just the phone
’sil’.

5.2. Feature Extraction

From here, data preparation was completed and we
moved to feature extraction. We used the Kaldi script
’make mfcc pitch.sh’ to extract the Mel-frequency cep-
stral coefficients (MFCC) [1] features and pitch data
for each audio file. Then, the Mel-spectral features [1]
were extracted from the audio files using the python li-
brary librosa. From here, we used another python library
called Kaldiio to read the ark files that contain the MFCC
and pitch data. For the final feature embeddings, all
aforementioned features were concatenated and passed
through Linear Discriminant Analysis (LDA) [1] in order
to perform both dimensionality and correlation reduction
of the features.

6. The Process: Rival Models
6.1. Convolutional Recurrent Neural Network with
Attention

Our first model is a Convolutional Recurrent Neural Net-
work (CRNN) with attention. CRNNs are essentially
a Convolutional Neural Network (CNN) followed by a
Recurrent Neural Network (RNN). Our CRNN approach
uses a 2-dimensional CNN and then an RNN built with
Bidirectional Long short-term memory (BiLSTM) layers.

Specifically, our model contains two 2-dimensional
convolution layers both with kernel size of 2 and whose



outputs are flattened and concatenated to the original fea-
ture embeddings. This is then all passed through two
BiLSTM layers both with 256 recurrent layers and 256
hidden features. Then, we add attention which allows
the model to focus on the relationship between differ-
ent discriminative features. The attention mechanism is
encapsulated as a single layer that comes after the two
BiLSTM layers and has output size of 7 for the 7 in-set
languages. [16] We then add a softmax output layer that
would typically be used for language identification since
it allows us to make a language prediction with highest
probability. Finally, to adapt this model to the open-set
language identification problem, a threshold is used so
that if all of the probabilities outputted by the softmax
layer are under this threshold, the input is deemed out of
the set and is rejected.

Other details related to this model include the loss
function and optimizer, for which we used cross-entropy
loss and stochastic gradient descent respectively. This
model with the aforementioned loss function and opti-
mizer was trained for 12 epochs.

See Figure 2 for a diagram of the CRNN + attention
architecture.

6.2. Time Delay Neural Network

Our second model is a Time delay neural network
(TDNN). TDNNs are feed-forward networks that can
model long-term context information. TDNNs are es-
pecially good at modeling context and classifying pat-
terns without needing any explicit segmentation of input
data. The key hyper-parameters of each layer in a TDNN
are context size, dilation, and stride which describe the
number of contiguous frames to observe, number of non-
contiguous frames to observe, and how many frames to
skip in an iteration.

Specifically, our model contains six layers of sizes
512, 512, 512, 512, 1500, 7 with context sizes of 5, 3,
3, 1, 1, 1 respectively. Each layer has dilation of 1, 2, 3,
1, 1, 1 respectively. All layers have stride of 1 and uses
the ReLU activation function. [17] We then add a final
softmax output layer that would typically be used for lan-
guage identification since it allows us to make a language
prediction with highest probability. Finally, to adapt this
model to the open-set language identification problem, a
threshold is used so that if all of the probabilities out-
putted by the softmax layer are under this threshold, the
input is deemed out of the set and is rejected.

Other details related to this model include the loss
function and optimizer, for which we used cross-entropy
loss and stochastic gradient descent respectively. This
model with the aforementioned loss function and opti-
mizer was trained for 12 epochs.

See Figure 3 for a diagram of the TDNN architecture.

Figure 2: CRNN + Attention Architecture

7. Results
7.1. Convolutional Recurrent Neural Network with
Attention

The training data used when training our CRNN with at-
tention included 80% of the total duration of audio files
from each of the 7 in-set languages: English, Spanish,
French, Korean, Mandarin, Russian, and Turkish. After
training the model for 12 epochs on this training data and
before experimenting with any thresholds, we first tested
it on the other 20% of the total duration of audio files
from just the 7 in-set languages again in order to gauge
how well our model performs at the closed-set language
identification task. The CRNN with attention was able
to achieved an in-set accuracy of 85%; that is, the model
was able to correctly identify the language of a given in-
set language audio input 85% of the time.

We then incorporated a threshold as the final layer
of the model and tested the CRNN with attention on the
other 20% of the total duration of audio files from the 7
in-set languages as well as the 2 out-of-set languages: Ja-
vanese and Bengali. We measured three accuracies: over-
all accuracy, in-set accuracy, and out-of-set accuracy. The
overall accuracy is how often our model was able to take
an input and correctly identify its language or reject it if
it was not one of the 7 in-set languages. The in-set accu-
racy describes how often our model was able to correctly
identify the language of an in-set audio input. The out-of-
set accuracy describes how often it was able to correctly
reject an out-of-set audio input.

We noticed that the overall accuracy of our model
reached a maximum of 0.791 across the various thresh-



Figure 3: TDNN Architecture

olds we experimented with. With too small of a thresh-
old, the overall accuracy was about 70% but as the thresh-
old was increased slightly, the overall accuracy began
to increase. At around a threshold of 0.7 and 0.75, the
overall accuracy started to reach its maximum. However,
when the threshold was set to be too high, the overall
accuracy dropped drastically as too high of a threshold
resulted in perfect out-of-set accuracy but terrible in-set
accuracy. Using a threshold of 0.7, the CRNN with at-
tention achieves the maximal overall accuracy of 79.1%
along with in-set and out-of-set accuracies of 80.8% and
76.6% respectively. See Figure 4 for a plot of the overall
accuracy for various thresholds and Table 1 for the exact
data.

Compared to the state of the art for closed-set (the
2021 paper from Mandal et al [3]) which uses their own
CRNN with attention model and has an accuracy of 98%
(and 91% in noisy environments), our CRNN with atten-
tion model has an in-set language identification accuracy
of 85%. CNNs, which are a core part of our CRNN
model, are mainly used for image classification. Since
the CNN is able to model local context connectivity, it
is generally useful for tasks with images where a slid-
ing filter would be practical. In our feature embedding,
which uses MFCC and Mel-Spectral features [1], there
is little connectivity between dimensions, which is an ar-
gument for why our 2-dimensional CNN implementation
may not have been optimal. However, since there is still
local context connectivity across time steps in our data, a
1-dimensional CNN at the start of our CRNN with atten-
tion implementation may have been a better choice.

7.2. Time Delay Neural Network

The training data used when training our TDNN is iden-
tical to the training data of the first model. After training

Figure 4: CRNN + Attention Accuracy (%) Breakdown

Threshold Accuracy (%)
Overall In-set Out-of-set

0.6 73.0 83.8 56.9
0.65 76.8 82.2 68.5
0.7 79.1 80.8 76.6
0.75 79.1 76.4 83.0
0.8 77.8 69.5 90.2
0.85 71.7 56.0 95.2
0.9 60.4 35.4 97.7

Table 1: Accuracy Breakdown of CRNN + Attention vs
Threshold

the model for 12 epochs on this training data and before
experimenting with any thresholds, we first tested it on
the other 20% of the total duration of audio files from
just the 7 in-set languages again in order to gauge how
well our model performs at the closed-set language iden-
tification task. The TDNN was able to achieved an in-set
accuracy of 95%; that is, the TDNN was able to correctly
identify the language of a given in-set language audio in-
put 95% of the time.

While this assuredly beats out our CRNN + attention
model, when comparing to the state of the art CRNN + at-
tention with accuracy of 98%, our TDNN model with an
in-set language identification accuracy of 95% still falls
just a bit under. It is worth noting, however, that this
is with training/testing on only 70 hours of speech data,
which gives us hope that the TDNN model could actually
rival state of the art CRNNs.

We then incorporated a threshold as the final layer of
the model and tested the TDNN on the other 20% of the
total duration of audio files from the 7 in-set languages as
well as the 2 out-of-set languages: Javanese and Bengali.
First, we measured our model’s overall accuracy. We no-
ticed that the overall accuracy of our model reached a
maximum of 83% across the various thresholds we ex-
perimented with. With too small of a threshold, the over-
all accuracy was about 60% but as the threshold was in-
creased slightly, the overall accuracy began to increase.



At around a threshold of 0.7 and 0.8, the overall accuracy
started to reach its maximum. However, when the thresh-
old was set to be too high, the overall accuracy dropped
as too high of a threshold resulted in perfect out-of-set ac-
curacy but terrible in-set accuracy. See Figure 5 for a plot
of the overall accuracy for various thresholds and Table 2
for the exact data.

Taking a few of the best threshold results from the
previous step, we took a closer look into the in-set and
out-of-set accuracies individually. See Figure 6 for a
breakdown of the accuracy of the TDNN and Table 3 for
the exact data. At about a threshold of 0.8, we achieve the
maximal overall accuracy of 83.3% and in-set and out-of-
set accuracies of 85.2% and 80.4% respectively.

Figure 5: TDNN Overall Accuracy (%)

Threshold Overall Accuracy (%)
0.1 57.0

0.15 57.0
0.2 57.0

0.25 57.2
0.3 58.2

0.35 59.8
0.4 62.1

0.45 64.6
0.5 67.5

0.55 69.9
0.6 72.9

0.65 75.5
0.7 78.5

0.75 81.6
0.8 83.3

0.85 72.3
0.9 54.2

Table 2: Overall Accuracy of TDNN vs Threshold

Figure 6: TDNN Accuracy (%) Breakdown

Threshold Accuracy (%)
Overall In-set Out-of-set

0.6 72.9 93.1 42.7
0.65 75.5 92.4 50.4
0.7 78.5 91.4 59.3
0.75 81.6 89.3 70.1

0.7625 82.3 88.6 72.7
0.775 82.7 87.7 75.1

0.7875 83.2 86.7 77.9
0.8 83.3 85.2 80.4

0.8125 83.1 82.9 83.4
0.825 81.6 78.7 86.0

Table 3: Accuracy Breakdown of TDNN vs Threshold

8. Conclusion and Future Work
It is hard to come to any significant conclusions with re-
spect to our CRNN + attention model, as we were unable
to reproduce state-of-the-art performance on the initial
closed-set task, meaning our open-set results are likely
also markedly worse than what the best models could
theoretically produce. This, however, is not to say that
our labor was without fruit. What we did learn was that
even with a modestly sized data set, a TDNN is still
able to produce respectable closed-set language identifi-
cation results, and has the potential (perhaps simply with
more data) to rival the modern CRNNs that seem to be
dominating the field at the moment. Essentially, TDNNs
should not be counted out as an option when architect-
ing modern solutions to language identification tasks, and
they could yet be the key to breaking our existing barriers
in the field. Furthermore, when incorporating thresholds,
the TDNN was still able to hold its own on in-set data,
even when pushing towards high out-of-set detection ac-
curacy.

There is still much to be done in terms of these ex-
periments, though. First and foremost is that a more di-
verse array of thresholding and detection methods need to
be tested. Surely modeling a curve and picking the best



static threshold is not the optimal thresholding solution,
and dynamic solutions (such as per-language thresholds),
could yield significantly improved results, perhaps allow-
ing us to retain an in-set accuracy much closer to our ini-
tial 95%. Beyond this, one may notice that we did not
get a chance to experiment further with LDA transforma-
tion sets, and treating out-of-set detection as a verifica-
tion task. This will be an important, if not necessary, step
should one choose to continue on this path of research.
This is not only due to potential accuracy gains, but also
the functional advantages that these deeper embeddings
may provide, as mentioned in our initial reasoning.

Additionally, more can be done with respect to fea-
ture abstraction and embedding. Further experimentation
with respect to optimal incorporation of Mel-Spectral
features, as well as the initially-planned i-vectors, could
do a great deal in increasing even our models’ closed-set
accuracies. Obviously there is much more work to be
done with our CRNN + attention model as well in get-
ting it up to modern standards, though our first course of
action would likely be to attempt to break the state of the
art with our highly-performant TDNN, and from there be-
gin experimenting with other open-set detection solutions
to truly build something practically meaningful. Overall,
though, we have gained a great deal of knowledge and ex-
perience from this experiment already, and look forward
to attempting to take it further.

9. References
[1] H. Beigi, Fundamentals of Speaker Recognition. New

York: Springer, 2011, ISBN: 978-0-387-77591-3, http:
//www.fundamentalsofspeakerrecognition.org.

[2] C. Bartz, T. Herold, H. Yang, and C. Meinel, “Language
identification using deep convolutional recurrent neu-
ral networks,” arXiv preprint arXiv:1708.04811 [cs.CV],
Aug. 16 2017.

[3] A. Mandal, S. Pal, I. Dutta, M. Bhattacharya, and S. K.
Naskar, “Is attention always needed? a case study
on language identification from speech,” arXiv preprint
arXiv:2110.03427 [cs.LG], Oct. 5 2021.

[4] A. Baevski, H. Zhou, A. Mohamed, and M. Auli,
“wav2vec 2.0: A framework for self-supervised
learning of speech representations,” arXiv preprint
arXiv:2006.11477 [cs.SL], Oct. 22 2020.

[5] M. Toftrup, S. Asger Sørensen, M. R. Ciosici, and
I. Assent, “A reproduction of apple’s bi-directional
LSTM models for language identification in short
strings,” in Proceedings of the 16th Conference of the
European Chapter of the Association for Computational
Linguistics: Student Research Workshop. Online:
Association for Computational Linguistics, Apr. 2021,
pp. 36–42. [Online]. Available: https://aclanthology.org/
2021.eacl-srw.6

[6] I. Rebai, Y. BenAyed, and W. Mahdi, “Improving of
open-set language identification by using deep svm and
thresholding functions,” in 2017 IEEE/ACS 14th Interna-
tional Conference on Computer Systems and Applications
(AICCSA), 2017, pp. 796–802.

[7] J. S. Chung, A. Nagrani, and A. Zisserman, “Voxceleb2:
Deep speaker recognition,” in InterSpeech. ISCA, Sep.
2-6 2018. [Online]. Available: http://dx.doi.org/10.21437/
Interspeech.2018-1929

[8] R. Kolobov, O. Okhapkina, O. Omelchishina,
A. Platunov, R. Bedyakin, V. Moshkin, D. Men-
shikov, and N. Mikhaylovskiy, “Mediaspeech: Mul-
tilingual asr benchmark and dataset,” arXiv preprint
arXiv:2103.16193 [eess.AS], Mar. 30 2021.

[9] Y. Choi and B. Lee, “Pansori: ASR Corpus Generation
from Open Online Video Contents,” in Proceedings of
the IEEE Seoul Section Student Paper Contest 2018, Nov
2018, pp. 117–121.

[10] L. Primewords Information Technology Co., “Primewords
chinese corpus set 1,” 2018, https://www.primewords.cn.

[11] Surfingtech, “Free st american english corpus,” 2018,
https://www.surfing.ai.

[12] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur,
“Russian librispeech (ruls),” https://www.openslr.org/96/,
2015.

[13] O. Kjartansson, S. Sarin, K. Pipatsrisawat, M. Jansche,
and L. Ha, “Crowd-Sourced Speech Corpora for Javanese,
Sundanese, Sinhala, Nepali, and Bangladeshi Bengali,”
Gurugram, India, pp. 52–55, Aug. 2018. [Online].
Available: http://dx.doi.org/10.21437/SLTU.2018-11

[14] N. Dehak, P. Kenny, R. Dehak, O. Glembek, P. Du-
mouchel, L. Burget, V. Hubeika, and F. Castaldo, “Sup-
port vector machines and joint factor analysis for speaker
verification,” Apr 2009, pp. 4237–4240.

[15] D. Povey, “OpenSLR,” https://www.openslr.org.

[16] Holmeyoung, “Convolutional recurrent neural network
+ ctcloss,” https://github.com/Holmeyoung/crnn-pytorch,
2019.

[17] cvqluu, “Tdnn,” https://github.com/cvqluu/TDNN, 2019.

http://www.fundamentalsofspeakerrecognition.org
http://www.fundamentalsofspeakerrecognition.org
https://aclanthology.org/2021.eacl-srw.6
https://aclanthology.org/2021.eacl-srw.6
http://dx.doi.org/10.21437/Interspeech.2018-1929
http://dx.doi.org/10.21437/Interspeech.2018-1929
https://www.primewords.cn
https://www.surfing.ai
https://www.openslr.org/96/
http://dx.doi.org/10.21437/SLTU.2018-11
https://www.openslr.org
https://github.com/Holmeyoung/crnn-pytorch
https://github.com/cvqluu/TDNN

	 Introduction
	 Related Works and State of the Art
	 Datasets
	 Proposed Methodology
	 The Process: Data Preparation and Feature Extraction
	 Data Preparation
	 Feature Extraction

	 The Process: Rival Models
	 Convolutional Recurrent Neural Network with Attention
	 Time Delay Neural Network

	 Results
	 Convolutional Recurrent Neural Network with Attention
	 Time Delay Neural Network

	 Conclusion and Future Work
	 References

