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Abstract

Majority of speech signals across different scenarios are
never available with well-defined audio segments con-
taining only a single speaker. A typical conversation
between two speakers consists of segments where their
voices overlap, interrupt each other or halt their speech
in between multiple sentences. For a variety of ap-
plications such as transcription, it is really important
to identify multiple speakers in a conversation, for in-
stance, generating captions for a discussion or a meet-
ing. Thus, it becomes important for us to effectively
perform speaker diarization in speech signals contain-
ing conversations among two or more speakers. Recent
advancements in diarization technology leverage neural
network-based approaches to improvise multiple subsys-
tems of speaker diarization system comprising of ex-
tracting segment-wise embedding features and detecting
changes in the speaker during conversation. However,
to identify speaker through clustering, models depend on
methodologies like PLDA to generate similarity measure
between two extracted segments from a given conver-
sational audio. Since these algorithms ignore the tem-
poral structure of conversations, they tend to achieve a
higher Diarization Error Rate (DER), thus leading to mis-
detections both in terms of speaker and change identifi-
cation. Therefore, to compare similarity of two speech
segments both independently and sequentially, we pro-
pose a Bi-directional Long Short-term Memory network
for estimating the elements present in the similarity ma-
trix. Once the similarity matrix is generated, Agglom-
erative Hierarchical Clustering (AHC) is applied to fur-
ther identify speaker segments based on thresholding. To
evaluate the performance, Diarization Error Rate (DER
%) metric is used. The proposed model achieves a low
DER of 34.80% on a test set of audio samples derived
from ICSI Meeting Corpus as compared to traditional
PLDA based similarity measurement mechanism which
achieved a DER of 39.90%.

Index Terms— YVoice Activity Detection, Speaker
Diarization, x-vector, Bi-LSTM, AHC

1. Introduction

The process involving identification of the speaker of a
particular audio segment in a given audio file is called
Speaker Diarization [[1]. In layman’s terms, speaker di-
arization determines who spoke when.

Over the years, speaker diarization systems have
lacked the full utilization of advancements in deep learn-
ing techniques as compared to speaker verification or
recognition systems. Since the diarization labels are con-
fusing, for example, both ‘12223 and ‘31112’ present
equally apt sequences of speaker labels throughout the
audio file, and diarization is treated as an unsupervised
learning problem, there is a need for devising a fully-
supervised learning model for this problem statement.
Taking this into account, there have been recent advance-
ments in the use of Convolutional Neural Networks [2]]
and Recurrent-Neural Networks [3]] for improvising the
performance of speaker diarization.

In state-of-the-art methods, PLDA is applied to es-
timate the similarity metric between two speech seg-
ments, however, since PLDA is a hypothesis testing-
based method [1], comparisons are only performed in
pairs therefore completely dismissing the time-related or-
ganization of similarity computation. The sequential-
order of speech segments is completely disregarded due
to their probabilistic nature. Since people always con-
verse in a structured manner and not randomly over time,
using PLDA for similarity scoring leads to a high diariza-
tion error rate. This problem can be tackled by using a bi-
directional LSTM to compute the elements of the similar-
ity matrix (backward as well as forward) of audio signal.
Therefore, the use of Bi-LSTM over PLDA is proposed
to compare the similarity of 2 segments both indepen-
dently and sequentially and achieve a lower diarization
error rate.

In summary, the proposed work achieved the follow-
ing: an end-to-end diarization pipeline is designed using
the ICSI Meeting Corpus dataset [4] consisting of around
70 hours of meeting recordings of multiple speakers. The
Time-delayed Neural Network used to extract x-vector
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embeddings is trained from scratch on a portion of ICSI
Meeting Corpus dataset and the Bi-LSTM is also trained
on a portion of the dataset through k-fold cross validation.
To further boost the performance efficiency of training
Bi-LSTM and reduce the consumption of memory, batch
processing is employed which breaks down the similar-
ity chunks into small matrices and feeds them into the
memory sequentially. The computed DER % based on
the similarity matrix generated from Bi-LSTM and clus-
tering is compared with the traditional scoring algorithm
of PLDA across various parameters like x-vector embed-
dings dimension, window length, AHC threshold, etc. to
showcase the low error rate of the proposed algorithm.
Finally, we also compared the performance of AHC clus-
tering with the traditional graph-based algorithm of Spec-
tral Clustering (SC) for Bi-LSTM scoring.

The remaining paper is categorized as follows: Sec-
tion 2 talks about the various state-of-the-art diarization
techniques along with their implications. Section 3 for-
mulates the problem statement through a theoretical de-
scription of the techniques used followed by a detailed
system overview of the proposed diarization pipeline and
the pseudo code executed to achieve the results through
Kaldi in Section 4. Experimental techniques and the
quantitative results obtained are detailed in the 5th Sec-
tion and finally, we draw conclusions along with scope
for future work in this domain in the last section.

2. State of the art

Typically, a lot of sub-systems are coupled together to
develop a holistic speaker diarization system. Start-
ing with separating the speaker audio from background
noise, Voice Activity Detection (VAD) [SL!1]] is performed
which is usually based on energy thresholds. Once we
segregate these speech regions from original audio, uni-
form segmentation [6] is applied to further split them
into segments containing speaker-homogenous contents.
In typical scenarios, this process can also be achieved
using a Speech Change Detector (SCD) [[7, 18], which
splits these speech regions into multiple same-speaker
segments. To extract features out of these homoge-
nous segments, a mapping to a fixed dimensional space
is applied through speaker embedding systems such as
x-vector [9} [10] or i-vector [11]. Over the years, i-
vectors have been extensively used in the form of low-
dimensional vector embeddings computed over MFCC
features [[1] for automatic speech recognition. However,
while using i-vectors for speaker diarization, a cluster-
ing layer is required as these embeddings represent both
channel as well as speaker features. Since the process
of clustering is extremely correlated with the total size
of speech segments analyzed by the system, there is a
high risk of poor performance in mapping these seg-
ments to speakers if the embeddings process short seg-
ments of speech containing less information [12]]. Due
to this risk associated with using i-vectors, anchor mod-
elling techniques were introduced in [13]] to output a sim-
ilarity score for utterance anchors which represent the

speech utterances from a set of pre-trained speak mod-
els. Several diarization algorithms also employ speaker
verification methods [14} [15] to generate these feature
embeddings from the outputs present in the penultimate
layer. [16] performed speaker classification by train-
ing a 3-layer neural network which was then applied to
a Gaussian Mixture Universal Background model. As
a scoring mechanism, various similarity measurement
techniques like Probabilistic Linear Discriminant Anal-
ysis (PLDA) [[17] or Cosine Similarity are used to iden-
tify similarity metric between a pair of these segments to
generate a similarity matrix. To obtain diarization results,
similarity matrix is passed on as an input to various clus-
tering algorithms like Spectral Clustering [6], Agglomer-
ative Hierarchical Clustering (AHC) [18]], etc.

3. Problem Formulation

A typical speaker diarization system is tasked with the
objective of identifying the set of labels depicting when
each speaker talks by analyzing a given set of speech
signals. In terms of computational learning paradigm,
we can formulate this problem as a typical supervised
learning-based classification task provided we know the
identities of speakers in some form of the data input to
the system. However, this is an extremely ideal case, and
does not occur in real world. So, to approach the problem
of speaker diarization, we can split it into two stages.

Firstly, we classify each of the speakers by training
a time-delayed neural network which can extract time-
dependent speaker characteristics or speaker embeddings
called x-vectors [9]. Generally, the activations generated
from the penultimate layer of the neural network are used
as x-vectors. These x-vectors are obtained by aggregating
the outputs after sigmoid layer in a class-by-class manner
followed by normalizing these values over the entire au-
dio signal.

Once we have extracted all the speaker dependent in-
formation, we analyze these embeddings as a function of
time so that the computational algorithm can detect when
the speaker changes. The speakers which are new to the
system are then compared with the existing database of
previous speakers’ feature embeddings through a similar-
ity measurement methodology. In layman’s terms, if sim-
ilarity measure between two embeddings is below a par-
ticular user-defined threshold, the speaker is considered
as new, otherwise it is mapped with the closest speaker
embedding. This process can also be implemented using
a learning algorithm (Bi-LSTM in our case) where the
primary objective of the neural network is to predict el-
ements of similarity matrix between each of the speaker
embeddings. For this supervised learning task, we input
the speaker embeddings as the features and the ground
truth labels based on speaker identity information. Equa-
tion[T|denotes the Binary Cross Entropy (BCE) loss func-
tion which the neural network aims to optimize for N
training samples and n classes (dimension of similarity
matrix).
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The predicted similarity measure is denoted by g, for
asp, data point and g, denotes the ground truth for the
same data point.

3.1. x-vector embeddings

x-vector is a type of feature embeddings extracted using
deep neural network which was originally used in speaker
verification systems as features. These x-vectors are ob-
tained through supervised learning of a time-delayed neu-
ral network where MFCCs extracted from the speech data
are used as input features. The various frame-level fea-
tures are transformed into a single segment-level embed-
ding through time-pooling modules of time-delay neural
network. x-vector is the output of the second last layer in
the neural network.

For the given problem statement of speaker diariza-
tion, Table |1| provides a holistic view of neural network
architecture which is trained as an x-vector extractor.

Name ‘ Layer Type ‘ Input Size ‘ Output Size ‘

tdnnl relu-batchnorm-layer 13 512
tdnn2 relu-batchnorm-layer 1536 512
tdnn3 relu-batchnorm-layer 1536 512
tdnn4 relu-batchnorm-layer 512 512
tdnn5 relu-batchnorm-layer 512 1500
stats stats-layer (pooling) 1500T 3000
tdnn6 relu-batchnorm-layer 3000 512 or 128
tdnn7 relu-batchnorm-layer | 512 or 128 512
output | output-layer 512 N

Table 1: Architecture design for x-vector extractor

Here, T is the number of frames present in the in-
put and N represents the number of speakers in the train-
ing set. Layers tdnnl-5 correspond to feature-level lay-
ers in the speech containing a small context centered
around the frame currently in processing. ‘stats’ layer
or statistics pooling layer computes the mean and stan-
dard deviation after adding all the T frame-level outputs
from previous layer tdnn5. The output of stats layer con-
tains a 1500-dimensional vector for each input segment
T. Further, segment level layers comprising of tdnn6 and
tdnn7 aggregate the computed mean and standard devi-
ation to the output layer containing a SoftMax operation
with the number of identifiable speakers as the output size
(class size). The size of penultimate layer tdnn6 (or the
affine component of tdnn6) determines the dimension of
x-vector embeddings which is 512 or 128 depending on
the experiments performed in the later sections.

3.2. PLDA based Similarity Measurement

Probabilistic Linear Discriminant Analysis or PLDA is
a state-of-the-art algorithm used for computing similar-
ity scores between any two segments of speech (or any
other form of data). Once a PLDA system is trained on
a given set of features (x-vector embeddings in our case),
hypothesis testing is used to compute similarity between
2 segments, say, a and b as described in equation Equa-
tion[2

Sab = Fplda(xaa xb) (2)

Here, S,;, is the similarity measurement between x,
and x;,. PLDA originally outputs a score between [-1, 1]
which is not ideal for clustering. Therefore, we normalize
the output score using a logistic function to bound the
similarity measure between [0, 1]. The logistic function
1(x) is defined in Equation 3]

1
l(z) = ————
@) = 5

Therefore, now S, is bounded between [0, 1] where
1 denotes that segments a and b originate from a single
speaker and 0 denotes otherwise.

3

3.3. Bi-LSTM based Similarity Measurement

An ideal similarity matrix contains Boolean elements
where 0 denotes no similarity and 1 denotes that the two
elements are from the same speaker. Moreover, content
of the matrix does not change with the change in speaker
index. To treat this problem as a supervised learning
problem, the entire speaker embedding sequence x is
used with matrix S as the class label. This is how we for-
mulate the objective for Bi-LSTM model optimization.
Therefore, we use binary cross entropy loss during the
training of Bi-LSTM model to predict each row of S.

First step is to concatenate 2 x-vectors x, and x
which generates a 2D input for LSTM in the form
[z, 2" having the output as S,;. Equations [4| and
depicts the formulation of learning problem for Bi-LSTM
in sequential manner.

Sa - [Sala Sa27 seey San] (4)

S r = Fan[2] [2] c [2]

T T2 Tn

(&)

Here, S, also depicts the output of a'” sequence in

a batch containing a total of n sequences. Therefore, to

form the similarity matrix S, each of the n outputs are

stacked row-wise. Figure (1| shows the high-level archi-

tectural working of Bi-LSTM based similarity measure-
ment.
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Figure 1: Bi-LSTM System Design [19]

For audio signals, the value of n is usually large lead-
ing to the size of matrix S being extremely large. For
instance, if n equals 10,000 and d equals 512, the total
size of batch input matrix will be 10,000 x 10,000 x (2
x 512), i.e., 1024 x 108. If each data point is stored as
a floating-point datatype (requiring 4 bytes of memory),
the matrix will require around 190.73 GB of RAM to per-
form computations on the entire matrix at once. Apart
from this, LSTMs usually have poor generalization per-
formance when given very long sequences as an input.
The challenge of memory requirement can be solved by
using the technique of sliding window, however, the sim-
ilarity matrix generated will be of the form of a diago-
nal block. This will lead to the system being unable to
identify the different or same speakers among different
windows.

nxnx2ad nxn

batch input matrix similarity matrix .§'

Figure 2: Batch-processing technique [19]

In the proposed work, we suggest the technique of
batch processing to tackle the above-mentioned short-
comings. Similarity matrix S is divided into several small
chunks of matrices with size dependent on a max length
threshold and process these batches sequentially through
the Bi-LSTM model. Figure [2] denotes the breakage of
a single n x n matrix into 4 sub-matrices of size § x 3
which is then passed onto the Bi-LSTM network sequen-
tially.

In terms of neural network architecture, the model
consists of 2 Bi-LSTM layers having 512 outputs each.
Since the LSTM is bidirectional, 256 outputs are in for-
ward direction and 256 are in backwards direction. This
is followed by a fully connected layer having 64 dimen-
sions and ReLU activation layer. The final layer is a sin-
gle dimensional layer connected to a Sigmoid operation.
The Sigmoid function is responsible for generating the
similarity measurement between 0 and 1.

3.4. Spectral Clustering (SC)

Spectral Clustering (SC) is a clustering algorithm which
is based on graphs [20]. To compute values of a similarity
matrix S, SC generates an undirected graph with the num-
ber of nodes equal to the number of rows or columns in
S. All the nodes are connected with edges having weights
equal to S, (for edge between a and b). SC then removes
edges with weights less than a threshold value and hence,
forms multiple sub graphs from the existing graph.

As afirst step in SC, every single diagonal element is
set as 0 because it denotes self-similarity. Then Laplacian
matrix L is formulated using the difference between diag-
onal matrix D defined as D, = ZZ: 1 Sap and similarity
matrix S (as shown in Equation [6).

L=D-8 (©6)

Here, the norm of Laplacian matrix is computed in
equation [7}

Lnorm, = DilL (7)

After computing eigenvalues and eigenvectors of
Ly orm- SC then takes k smallest eigenvalues and their
corresponding eigenvectors to construct a matrix P con-
taining each column as the set of k smallest eigenvectors.
Finally, each row of P is clustered using k-means to gen-
erate the similarity matrix.

3.5. Agglomerative Hierarchical Clustering (AHC)

Agglomerative Hierarchical Clustering (AHC) is a form
of hierarchical clustering methodology where the objec-
tive of the algorithm is to perform consecutive unification
operations [21]]. Unification or merging occurs when two
particular data points are assigned the same cluster based
on a similarity measure. These similar clusters are then
further used for clustering. AHC algorithm starts by ini-
tializing clusters equal to the total number of datapoints,
n in our case (number of rows or columns of similarity
matrix S,;). As the next step, algorithm looks for the
pair having highest similarity, unifies them, and subtracts
1 from the total number of available clusters. This pro-
cess is recursively repeated with the stopping condition
that the similarity measure between any 2 clusters falls
below a particular value designated by the user.

4. Proposed Methodology

Figure [3] describes a high-level flow of the proposed
diarization model. From a given set of audio signals
(obtained from ICSI Corpus) containing both voice and
background noise, we first prepare the data for process-
ing by splitting it into train and eval directories ( 93%
& 4% respectively) followed by splitting each speaker’s
data into 30-second chunks. This step ensures a baseline
form of diarization which will assist in the further
process of actual diarization. From these 30s chunks, we
extract MFCCs and perform Voice Activity Detection
to generate speech separated audio signals. Finally, to



generate input features for time-delayed neural network,
cepstral mean and variance normalization is performed
to generate set of 13-dimensional audio features for both
train and eval sets.

For developing the x-vector extractor, a time-delay
neural network is trained on the train set of the prepared
data to generate feature embeddings in the form of x-
vector [x1, Za, ....Z5]. As mentioned in the previous sec-
tion, 2 different sets of neural networks are trained: one to
generate 512-dimensional x-vectors and another to gener-
ate 128-dimensional x-vectors. Once the training is com-
plete, a set of x-vectors are extracted for both train and
eval sets using varying window size and time period.

A bi-directional LSTM model is used to predict sim-
ilarity score S, of every embedding vector pair (z,, xp)
to generate similarity matrix S using the binary cross
entropy loss function. To compare the performance of
our model with state-of-the-art diarization techniques, a
PLDA model is also trained on the train set x-vectors after
reducing the dimensions through LDA (150-dim and 100-
dim for experimentation). These reduced set of x-vector
features are then scored on eval set features to generate
similarity matrix.

For the task of supervised diarization learning, we
leverage the entire matrix S as the class for the given
speaker embedding sequence. Once similarity matrix is
generated, Agglomerative Hierarchical Clustering is ap-
plied which initializes each segment as a singleton clus-
ter. Since AHC algorithm is represented as a binary-tree
building process, it works from bottom to top by con-
sidering each cluster as a leaf. During learning itera-
tions, we merge clusters having a large similarity value
and stop when the score is below a particular threshold
hyperparameter value. This process is repeated for simi-
larity matrix generated by PLDA as well. Again, we also
apply Spectral Clustering algorithm for both Bi-LSTM
and PLDA based similarity matrices. The final Diariza-
tion Error Rate (DER %) are generated by using Statistical
Language Modelling Toolkit (SCTK) which compares
the generated segment labels with ground truth present
in respective utt2spk files.

Kaldi speech recognition toolkit [22] is used to create
the end-to-end diarization pipeline. The pseudo code for
the entire process is depicted by Algorithm 1.

4.1. Dataset

The proposed work utilizes ICSI Corpus [11] for training
various methodologies in the pipeline as well as evalua-
tion. ICSI Corpus is a dataset which is based on multi-
channel audio samples extracted from a set of 75 meet-
ings entirely based in English language. These meet-
ings have been collected between the time period 2000-
2002 which occurred at International Computer Science
Institute, Berkeley. The minimum length of a meeting
is 17 minutes whereas meetings as long as 103 minutes
are present in the dataset as well. In total, around 72
hours of audio data is present in the form of meeting

Algorithm 1: Diarization Pipeline in Kaldi
Input: ICSI Corpus Dataset (individual headset
mix) + Transcriptions

run _prepare shared.sh

-prepare dictionary ./icsi_prepare_dict.sh

-prepare language resources ./prepare_lang.sh
-convert transcriptions from MRT format to anno-
tations ./icsi-text_prep.sh

-generate language model ./icsi_train_lms.sh

run.sh

-split data directories: dev, train, eval

-for data in train dev eval... do:
Jmodify_speaker_info.sh 30 (split 30s chunks)
-mfcc extraction for train set ./make_mfcc.sh

-for data in train dev eval... do:
Jcompute_vad_decision.sh

-for data in train dev eval... do:

Jprepare feats.sh

-for d = 512 and 128... train x-vector extractor
J/run_xvector_la.sh

-for d = 512 and 128... extract x-vectors ./ex-
tract_xvectors.sh

-for d = 512 and 128... train and score using plda
ivector-compute-plda

-for d = 512 and 128... predict DER using AHC
J/cluster.sh

-for d = 128... 5-fold split ./ kfold.py

-for each split... train bi-Istm ./train.py

-for each split... predict similarity matrix ./pre-
dict.py

-for each split... compute DER using AHC and SC
Jcluster.py

Output: DER logs per experiment for eval set

room speech. The dataset also contains transcriptions for
each of these meetings along with specific annotations of
non-speech as well as speech segments within the data.
This information is present in the MRT extension. In
terms of demographical information, each meeting con-
tains around 3 to 10 participants, with a total of 53 unique
speakers in the entire dataset. To add to the variation,
dataset also contains a good amount of non-native En-
glish speakers having different levels of fluency. For our
pipeline, the speech segments are divided into 3 sets of
training (67.5 hours), development (2.2 hours) and eval-
uation (2.8 hours) which ensures that there is a minimum
overlap of same speakers across these sets. Dataset was
originally recorded in 3 different types: individual head-
set mic recording, distant multiple mics recording and
distant single mic recording. For our purpose, we used
individual headset recordings. The information regard-
ing the speaker mapping to the headset is present in the
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Figure 3: System Architecture

MRT transcription files which is decoded through Kaldi.

4.2. Implementation Details

As the entire pipeline is designed using Kaldi, there ex-
ists a recipe to prepare the ICSI Corpus for individ-
ual headset mic recording type. First, we execute the
script run_prepare_shared.sh available in Kaldi’s ICSI
Corpus recipe for ASR to generate dictionary, language
resources, language model and annotations. Post this
step, everything is implemented in the script titled run.sh
which is designed from scratch and suited to ICSI Corpus
dataset.

In the initial stages, we do some data-preprocessing:
splitting data into dev, test, and train sets, and making 30s
chunks of speaker speech segments. Kaldi’s pre-designed
bash scripts are used for these stages. Once the data
is ready, MFCCs are extracted, followed by VAD and
then generating final set of 13-dimensional features post
CMVN. For our experiments involving PLDA, we train
an x-vector extractor from the scripts present in SRE16
recipes of Kaldi. run_xvector_la.sh script is executed
which generates examples for training the TDNN and fi-
nally, trains the TDNN. For this script, we hardcode min-
frames-per-chunk as 16 and max-frames-per-chunk as 50.
With these examples, we train 2 TDNN’s (512 and 128-
dimensional x-vector extractors). For our experiments
involving PLDA, we use Kaldi’s in-built scripts ivector-
compute-lda, ivector-compute-plda, score_plda.sh to gen-
erate PLDA-based scores for window length and time pe-
riod as discussed in the experiments section. Next, AHC
is applied using cluster.sh script included with Kaldi
where we search for the optimum threshold between -0.3

and 0.5. To evaluate the DER, we use SCTK’s md-eval.pl
script to generate diarization report for each of these ex-
periments.

Bi-LSTM network is trained using a readily available
library for Kaldi [[19] which contains script to train a cus-
tom Bi-LSTM network, split the data to perform k-fold
validation, and clustering (AHC and SC). We train the
Bi-LSTM for a total of 10 epochs due to constraints in
time and resources. For splitting the data into batches, we
used a threshold of 200, i.e., if sequence length is above
200, it will be broken down into batches dependent on
the size of sequence. Learning rate is set as 0.01 initially
in the training process. Once, the network is trained, we
perform AHC and SC clustering with varying thresholds
between 0 and 1.0 to find the best optimum value for each
fold. These results per fold are then combined to gener-
ate predictions using predict.py script. Finally, cluster.py
script uses SCTK’s md-eval.pl to generate DER results
for best possible threshold value.

5. Results and discussion

5.1. Evaluation Metric: Diarization Error Rate

(DER%)

DER is a metric used for quantitatively evaluating
speaker diarization modules. The following errors are in-
cluded in computing the DER: errors from voice activ-
ity detection, segmentation error, and classification error.
DER % can be computed with the expression depicted in
Equation|[§]
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The numerator is an absolute sum of total time in-
correctly identified as voice (errgpy), total timestamps
assigned to incorrect speakers (errsqs), and the amount
of speech missed due to faulty voice activity detection
(errmiss). Here, T denotes the total time of the audio se-
quence. Since the annotation of speech data is performed
manually, there is always a chance for human error. DER
computation also takes into account the possibility of hu-
man error by providing an acceptance margin of 250ms.

5.2. Quantitative Evaluation

Quantitative evaluation is performed by carrying out ex-
periments to determine DER% for two different scor-
ing algorithms: PLDA and Bi-LSTM. For PLDA based
scoring, to demonstrate the trade-off between memory
consumption and accuracy, we use 2 different sets of x-
vector models having 512 and 128 dimensions respec-
tively. Also, 2 different types of window lengths and time
periods are used to generate separate sets of x-vectors
which, however, did not have a noticeable impact on the
accuracy of model. Finally, to test the efficacy of our pro-
posed pipeline using Bi-LSTM scoring and AHC cluster-
ing, we also tested the model by using Spectral Clustering
to generate DER for eval set. 128-dimensional x-vector
extractor was used for both of the experiments involv-
ing Bi-LSTM with a window length of 3.0s having time
period 1.0s during extraction. Apart from the first exper-
iment containing 512-dimensional x-vectors on PLDA +
AHC pipeline, the sliding window cepstral mean normal-
ization was not applied.

Table 2] contains the resulting DER % on the eval
set of ICSI Corpus for different model designs and ex-
periments. As evident from the table, the proposed al-
gorithm which uses Bi-LSTM network for scoring and
AHC for clustering achieved the least DER of 34.80%
which is a noticeable improvement in comparison to the
DER of range 39.9% - 43.51% achieved by state-of-the-
art PLDA scoring and AHC based system. Since LSTMs
have the capability to learn the sequential patterns in the
data, our proposed work performed better in the classifi-
cation task of identifying speakers for each of the audio
segments. PLDA does not take into account the sequen-
tial information of conversation, i.e., how speakers take
turns in talking and perform a highly structured conversa-
tion. Therefore, as evident from our analysis, Bi-LSTM
is able to fully understand the statistical information in
conversations with the help of its forward and backward
layers.

For PLDA based similarity matrix generation
pipeline, reducing the number of dimensions for x-
vectors also increased the DER with a trade-off between
memory consumption and accuracy of classification. As
the dimensions are reduced from 150 to 100, the DER
drops from 39.9% to 40.92%. However, there is a sig-

Model De- x-vector x-vector DER%

sign extraction dimen-
methodology sions
PLDA scor- window length 512 re- 39.90%
ing + AHC 1.5s with pe- duced (thresh-
riod 0.75s and to 150 old
CMN using 0.4)
LDA
window length 512 re- 43.51%
3.0s with pe- duced (thresh-
riod1.0sandno to 128 old
CMN using 0.5)
LDA
window length 512 re- 40.92%
3.0s with pe- duced (thresh-
riod1.0sandno to 100 old
CMN using 0.5)
LDA
window length 128 43.26%
3.0s with pe- (thresh-
riod 1.0s and no old
CMN 0.5)
window length 128 re- 40.95%
3.0s with pe- duced (thresh-
riod 1.0sandno to 100 old
CMN using 0.5)
LDA
Bi-LSTM window length 128 38.08%
scoring + 3.0s with pe-
SC riod 1.0s and no
CMN
Bi-LSTM window length 128 34.80%
scoring + 3.0s with pe-
AHC riod 1.0s and no
CMN

Table 2: DER % for different model designs

nificant drop in the memory requirement as the total dat-
apoints reduce from n xn x (2x150) to nxn x (2% 100).

In our experiments, AHC is proven to perform better
than SC which achieved a DER of 38.08% for Bi-LSTM
based similarity matrix as compared to 34.80% for AHC.

6. Conclusion and future scope

In conclusion, we proposed an alternative speaker di-
arization pipeline which leverages the sequential property
of Bi-LSTM to predict similarity measures between two
datapoints instead of state-of-the-art PLDA based scor-
ing algorithm. The training as well as evaluation of the
computational learning algorithms like TDNN, LSTM,
PLDA, etc. was performed on ICSI Corpus which con-
tains around 72 hours of human speech in the form of
meeting conversations. We also demonstrated the trade-
off between memory consumption and accuracy in terms
of DER and proposed a batch-processing methodology
to train the extremely deep Bi-LSTM. We performed ex-
periments to choose the best clustering methodology for



generating the final output and chose AHC over Spectral
Clustering based on its improved performance. Our best
performing model achieved a low DER of 34.08% on the
evaluation set extracted from ICSI Corpus.

In future, we plan to expand this work by performing
data augmentation on the dataset which adds noise, re-
verberation, babble noises, and music to the original au-
dio files. This will make the system more robust and will
feed the neural network more data, thus, boosting the ac-
curacy of the system. Training the TDNN and Bi-LSTM
for more than 200 epochs is also a target since the com-
putational limitation and time constraints limited the total
number of epochs to 10. Continuing the training process
for longer can further optimize the BCE objective func-
tion leading to a better generalization capability of the
system on unseen data. We also plan to include more
largescale datasets like VoxCeleb [4] to further enhance
the system.
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