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Abstract

Closed-set spoken language identification is the task of
recognizing the language being spoken in a recorded au-
dio clip from a set of known languages. In this study,
a language identification system was built and trained to
distinguish between Arabic, Spanish, French, and Turk-
ish based on nothing more than recorded speech. A pre-
existing multilingual dataset was used to train a series of
acoustic models based on the Tedlium TDNN model to
perform automatic speech recognition. The system was
provided with a custom multilingual language model and
a specialized pronunciation lexicon with language names
prepended to phones. The trained model was used to
generate phone alignments to test data from all four lan-
guages, and languages were predicted based on a voting
scheme choosing the most common language prepend
in an utterance. Accuracy was measured by comparing
predicted languages to known languages, and was deter-
mined to be very high in identifying Spanish and Arabic,
and somewhat lower in identifying Turkish and French.

1. Introduction

Spoken language identification involves recognizing a
language based on a snippet of recorded speech. There
are multiple potential uses for this technology. Real-time
automatic translation and transcription systems often re-
quire prior information about the input language in order
to operate, and would not be suitable in an environment
where multiple languages are spoken at unpredictable
times, such as at a global conference. Automatic spoken
language identification can be used at the beginning of
a multilingual speech recognition pipeline to obviate the
need for human input and make the software work more
seamlessly. In particular, spoken language identification
could play a role in a code-switching detection pipeline
to keep track of when someone has begun to speak in
a new language, and what language they are speaking in.
Another potential application of this technology is in cus-
tomer service; currently, to serve diverse global clients a
customer service hotline may automatically list several

languages and direct the caller to press a button corre-
sponding to their language. Automatic spoken language
identification could be used to detect a caller’s language
and automatically route their call to a native speaker or
list additional options in their language.

2. Related Works

There have been many research studies exploring ways
to implement spoken language identification using both
neural networks and more traditional acoustic models.
There are, in addition, several basic language identifi-
cation utilities built into commercial products such as
Google Cloud, Microsoft Azure, and AWS [[1H3]]. These
technologies, however, are still in their early stages of
application; automatic language identification was only
added to AWS Transcribe in late 2020.

One of the first semi-successful approaches to lan-
guage ID was to use a panel of Hidden Markov Models
(HMMs), each trained on a single language [4]]. Speech
of some unknown language would then be decoded with
each of the HMMs in turn, and the language of the model
which decoded the speech most accurately was said to be
the unknown language. This method was further refined
by using separate stochastic models for each phoneme of
the target languages and decoding speech with a distinct
series of phoneme models for each language [5]]. In some
cases, these models took into account prosodic elements
by manually adjusting features to incorporate prosodic
characteristics of the languages [6}/7].

More recent works on automatic language ID use
deep-learning based methods to train neural networks as
acoustic models. One approach is to treat the problem
of language identification as a computer vision classifica-
tion problem, and thus to train a CNN on spectrograms
labeled with their corresponding languages [[8]. This ap-
proach, though it meets with some success in limited sce-
narios, must generate unnecessary intermediate images
and disregards decades of progress on acoustic feature
extraction and acoustic model generation.
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Other state-of-the-art deep-learning approaches are
more in line with traditional ASR and use convolutional
neural networks (CNNs) or regular deep neural networks
(DNNs) as acoustic models, accepting labeled i-vectors
as features [9]]. These methods achieve 3.48% and 3.55%
equal error rates (EER), respectively, on language identi-
fication among 50 different languages. Surprisingly, inte-
grating two different classifiers such as a CNN and a Sup-
port Vector Machine (SVM) by running them in parallel
and then adding the resulting scores yields an even lower
EER of 2.79%. Though Google, Inc. does not disclose
the technology that drives it automatic language identi-
fication on Google Cloud, it is likely that a DNN-based
method with i-vector features is used in their application
as well [10].

3. Dataset

The training data used in this study was the MediaSpeech
dataset [11]], which contains approximately 10 hours of
speech with matched transcriptions for Arabic, Span-
ish, French, and Turkish. This multilingual dataset was
chosen so that the data for all four languages would
have some degree of inter-language consistency in au-
dio quality and file format. The data was primarily de-
rived from European news channels, so it can be inferred
that the French accents represented in the dataset were
France-accented French as opposed to African-accented
French. To test the system’s performance, five addi-
tional datasets were used: a dataset of female speakers
in Colombian Spanish [[12], recited speech in Tunisian
Modern Standard Arabic [13]], a Turkish Daily Use Sen-
tence dataset [14], the att-HACK French Expressive
Speech Database with Social Attitudes [15]], and finally
a dataset of African accented French [[16]. The first four
datasets were used to test language ID performance on
speech similarly accented to the speech found in the Me-
diaSpeech dataset, and the final African accented French
dataset was used to determine the robustness of the pre-
diction on unfamiliar accents.

4. Methods

Different languages have distinct phonological compo-
sitions, vocabularies, and prosodies, and as such con-
tain many plausible features that could be used to dis-
tinguish one from another. The approach presented in
this study adapts the Kaldi Tedlium s5_r3 egs recipe for
speech recognition [[17,18] to perform language identi-
fication. Traditional MFCC feature extraction [19] and
acoustic modeling was followed with refined modeling
via a time-delay neural network. The resulting trained
network was used to decode testing data and determine
its language. A flowchart displaying the high-level steps
in this process is shown in Figure[I]
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Figure 1: High-level methodology for spoken language
identification used in this study.
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Figure 2: A small portion of the combined multilingual
dictionary with language prepends and renumbering of
different words with identical spellings.

4.1. Data and Lexicon Preparation

The most recent version of Kaldi [20] was cloned from
Github and compiled on a GCP VM instance. The Me-
diaSpeech dataset was then downloaded from OpenSLR,
and all audio files were converted to .wav from .flac for-
mats. The data directory for Kaldi feature extraction was
constructed according to Kaldi specification.

A pronunciation lexicon for each language in the
dataset was either downloaded or manually generated:
the French and Spanish pronunciation lexicons were
sourced from CMUDict [21]], the Turkish lexicon was di-
rectly downloaded from a private Github repository [22],
and the Arabic lexicon was generated by feeding the com-
bined corpus of Arabic utterances in the MediaSpeech
dataset into a Python tool for generating Arabic pronunci-
ation lexicons from a specified corpus [23]]. The lexicon
for each language was filtered to contain only (at most)
the 2000 most frequently occurring words in the Medi-
aSpeech transcriptions for that language. To adjust the
lexicon for the specific task of language identification, the
phones in each dictionary were prepended with a symbol
indicating the language of which they were a part. For ex-
ample, the "¢’ phone in Spanish was prepended with *ES’,
the ’aa’ phone in French was prepended with 'FR’, etc.
The dictionaries were combined and words with duplicate
spellings but different pronunciations among and within
languages were appropriately renumbered, as shown in

Figure

Next, the transcriptions provided for each language
in the MediaSpeech dataset were combined in random or-



der into a single multilingual corpus. This corpus was fed
into SRILM [24] with order 4 to generate a 4-gram mul-
tilingual language model in ARPA format. This was then
converted into an OpenFST format.

4.2. Feature Extraction and Training

As in the Tedlium egs recipe, feature extraction was per-
formed on the audio input to yield MFCC features for all
recordings. 10,000 segments in the dataset were subset-
ted, and these were used to perform flat start monophone
training. The monophones were aligned to transcriptions,
and the results were used to train delta-based triphones.
These too were aligned, and the results were used to boot-
strap and train LDA-MLLT triphones. Finally, the results
were aligned again and used to train SAT triphones.

The TDNN at the core of ASR acoustic modelling in
the Tedlium recipe is trained with iVectors. To generate
iVectors for the training data, the training data was speed-
perturbed and volume perturbed and and FMLLR-aligned
to generate low-resolution and high-resolution perturbed
MFCC features. These components were used to train
an iVector extractor for the perturbed training and native
testing data. Alignment lattices and a decision tree were
generated from the low-resolution MFCCs, and subse-
quently the MFCCs, decision tree, and extracted iVectors
were used to train a 16-layer TDNN. The training was
performed on a NVIDIA Tesla T4 GPU. A new graph
was generated and the training data was decoded based
on the high-resolution features computed previously.

4.3. Test Data Preparation

Rather than withhold a portion of the MediaSpeech train-
ing data as testing data, five additional datasets were used
to construct a testing partition. Aside from the practical
considerations governing this decision (namely, an over-
sight on behalf of the author), using other datasets to test
the model provided a more robust evaluation of its per-
formance in the real world because it introduced more
variability into the data quality, recording apparatus, and
speaker set. In addition to testing the performance of
the model on identifying languages similarly accented
to the training data, the robustness of the model in pre-
dicting the language of speech with an out-of-training
accented was also evaluated. The Colombian Spanish,
Tunisian Arabic, Expressive French, Daily Use Turkish,
and African Accented French datasets were downloaded
and cleaned to remove punctuation and capitalization.
The data directories for each language were assembled
according to Kaldi specifications as before, and then were
subsequently combined into one multilingual testing data
directory. High-resolution MFCC features were com-
puted for the assembled testing data, and iVectors were
extracted using the iVector extractor trained previously.

CLS 0001 1 0.000 0.090 SIL
CLS_0001 1 0.090 0.140 AR h B
CLS 0001 1 0.230 0.040 AR 1 I
CLS 0001 1 0.270 0.090 AR 1 E
CLS_0001 1 0.360 0.010 AR s _B
CLS 0001 1 0.370 0.090 AR r I
CLS 0001 1 0.460 0.010 AR f E
CLS_0001 1 0.470 0.010 AR m B
CLS 0001 1 0.480 0.010 AR 1 I
CLS 0001 1 0.490 0.010 AR aa I

Figure 3: A sample of the phone symbol predictions pro-
duce by the decoding. The first column indicates the ut-
terance name, the third and fourth columns indicate the
time range, and the fifth column indicates the predicted
phone symbol. Confidence values are excluded.

4.4. Decoding and Scoring

The combined testing data directory was decoded using
the graph produced by the TDNN training stage. The de-
coding was used to generate phone aligned lattices, and
finally a series of phone number predictions for each ut-
terance organized by timestamp. Each phone number was
converted to a phone symbol by referencing the canoni-
cal phone list used in training and decoding. A sample of
the intermediate .ctm file containing these phone symbol
predictions is shown in Figure 3]

Finally, the aligned phone predictions were used to
assign a hypothesized language ID to each utterance. The
predicted phones for each utterance were parsed to ex-
tract their prepended language symbols, and a tally was
maintained to keep track of the number of phones of a
particular language were present in an utterance; e.g, the
word “’basura” with phone predictions ES_b, ES _a, FR s,
FR_u, ES_r, AR_a would have a tally of ES: 3, FR: 2,
AR: 1. Then, by a simple voting scheme, the utterance
was predicted to be the language with the greatest tally.
This prediction was compared to the known language of
the utterance in each case, and the prediction accuracy
rate was computed as the primary metric for assessing
performance.

5. Results and Discussion

All data preparation, training, and decoding steps com-
pleted successfully. The accuracy rates for evaluation on
the testing set are shown in Figure[d]

5.1. Performance Assessment

The model’s accuracy in predicting Arabic utterances
to be Arabic and Spanish utterances to be Spanish was
>99%, which is higher than the current state of the art.
This high accuracy could be due to a number of factors,
including the inherent robustness of the ASR system used
in predicting the phones or because of high-quality audio



Total number of utterances 11,231
Correct predictions 7,005
Overall accuracy 62.37%
Arabic accuracy 99.08%
Spanish accuracy 99.66%
French accuracy 43.75%
African-accented French accuracy 25.10%
Turkish accuracy 67.39%

Figure 4: Results of decoding and scoring on the full
testing datasets for Arabic, Spanish, French, African-
accented French, and Turkish. The overall accuracy was
computed by simply dividing the number of correct pre-
dictions by the total number of utterances. The accuracy
for each specific language was computed by dividing the
number of correct predictions for that language by the
total number of utterances in that language.

and transcript data among the training and testing sets for
these languages. For Arabic in particular, an additional
reason for high accuracy could be that it is quite distant
linguistically and acoustically from the other three lan-
guages, and therefore might be easier to identify from
among these four.

The model’s accuracy in identifying French and
Turkish were significantly lower, though still greater than
random choice for all but African-accented French. The
accuracy on the Turkish testing dataset was about 70%;
one source of error for this dataset in particular was that
the source of the data (not OpenSLR) was quite obscure
since there are very few speech corpora for Turkish, and
the quality of the audio might not be optimal for testing.
Alternatively, there might be an upstream issue with the
pronunciation lexicon or language modeling for Turkish,
leading to reduced downstream model performance. The
accuracy of the model in identifying French was about
44%:; this could also be due to the data source, which was
part of the Expressive Speech dataset intended for emo-
tion detection applications. It is possible that the emo-
tional expression injected into the the audio could have
interfered with identifying the language. Upon exam-
ining the .ctm file containing the phone predictions for
the French utterances, it became apparent that almost all
the phones in every utterance were predicted to be ei-
ther French or Spanish, with Spanish in the slight ma-
jority. This is unlikely to be a coincidence; Spanish and
French are closely related Romance languages, and it
makes sense that the model might confuse the two with a
bias toward predicting phones as Spanish. Interestingly,
this examination reveals that the ASR system can pick up
on linguistic similarities and relationships between differ-
ent languages. One potential followup on this topic could
be to build a similar ASR system that, given a large set
of languages, can reconstruct the known language fam-
ily tree (e.g tracing the development of various languages
from the larger Indo-European family).

The prediction accuracy of the model on African-

Total number of utterances 10,023
Correct predictions 9,998
Overall accuracy 99.75%
Arabic accuracy 99.28%

Spanish accuracy 100%
French accuracy 99.84%
Turkish accuracy 99.88%

Figure 5: Results of decoding and scoring on the training
set.

accented French was about 25%, which indicates an es-
sentially random prediction. This result is surprising; the
phones in European French and African-accented French
are not that substantially different [25]], so a predictive
model for one French should apply to the other. It could
be that this predictive model is simply highly sensitive to
accent because of over-training or another technical rea-
son, or perhaps the phone differences are indeed substan-
tial enough to confound the model.

5.2. Further Sources of Error

An additional factor that could be degrading the perfor-
mance of this system is sub-optimal data preparation or
network architecture. As part of the training stage of
this system, the training data was decoded and scored for
WER (word error rate; i.e, the error rate of the model in
predicting the correct words in an utterance). At its low-
est, the WER was 54.47%, which is significantly higher
the the WER reported in the original Tedlium workflow.
This could indicate a number of issues, including not
enough training data being provided, improper process-
ing of the data, inconsistent pronunciation lexicons, or an
incorrect architecture for the neural network.

All of the enumerated potentially confounding fac-
tors in successful language identification could be the
subject of future followups to this study in order to im-
prove the system’s performance. As an immediate fol-
lowup, the training should be redone with only a portion
of the MediaSpeech dataset, with some of the data being
withheld for testing. The language identification accu-
racy of the model on the training data is >99% across
all languages (Figure [5), which could mean that testing
on different data from the same dataset would be more
successful, if the model is not simply over-fitted.

One concern with the general methodology followed
here to train a language ID model was that the model
might learn to identify languages based on particular
characteristics of the training audio rather than inherent
differences in the languages. For example, if all of the
speech data for French were collected with the same mi-
crophone and in the same strictly controlled environment,
the model might recognize the audio as French based on
subtle frequencies from that particular microphone, but
fail when presented with French recorded using a differ-



ent method of sound capture. Some potential solutions
included artificially adding random noise to the train-
ing set for each language to mitigate distinctive back-
ground noise. However, this concern was obviated in
other ways. One, a genuine multilingual dataset (Medi-
aSpeech) was used for training, so there was increased
assurance of consistent audio quality and recording appa-
ratus across the audio recordings of each language, reduc-
ing the possibility that a particular language might have
wildly distinctive background audio features. Two, the
performance of the model was tested on other datasets
which would not share any distinctive audio features with
the training data. The success of the model in accurately
predicting Arabic and Spanish utterances on external data
suggests that the model has learned real features of the
different languages, rather than simply audio artifacts.

5.3. Future Directions

One way to improve the model and overall performance
of the system could be to drastically reduce the size of the
neural network. Since the language identification task is
far more trivial than a precise speech-to-text transcrip-
tion task, the 16-layer TDNN used in the Tedlium recipe
is likely unnecessarily large for this purpose. An overly
large network could lead to poor training or over-fitting,
and most certainly leads to increased training times and
required resources. By reducing the number of layers
in the network and otherwise simplifying the architec-
ture, the model would be more lightweight and train more
quickly.

A more lightweight model could open up additional
applications for this language ID system, including in
real-time code-switching detection. In an environment
where one or multiple people take turns speaking in
different languages, a real-time code-switching detec-
tion system could pinpoint the exact times when these
switches occur, and predict the new language to which
the conversation has shifted. Since real-time operation of
such a system would require high decoding and scoring
speed, a lightweight model would be ideal.

The methodology used in this study could readily
transfer over to building a code-switching detection sys-
tem. The first step in training such a system would be to
generate artificial data containing multiple languages in a
single utterance, along with timestamps indicating when
the code-switches are known to occur. A similar ASR
system to the one used in this study could be employed;
indeed, only the evaluation stage would need to change
significantly. Example input to such an evaluation script
is shown in Figure [6| The evaluation script would read
through the first three phones and be confident that it is
detecting Spanish. Although it sees a single French phone
next, it would not decide that the language has switched
unless the number of phones of a different language that
it reads is above some threshold; therefore, this part of the
utterance would still be classified as Spanish. After see-
ing a few more Spanish phones, the system would detect

FO1 a4 s077 v01 1 0.380 0.020 ES n B
FO1 a4 s077 v01 1 0.400 0.020 ES o I
FO1 a4 s077 v01 1 0.420 0.010 ES_s E
FO1_a4 s077_v0l1 1 0.430 0.030 FR_aa_S
FO1 a4 s077 v0l1 1 0.460 0.010 ES e 7 S
FO1 a4 s077 v0l1 1 0.470 0.020 ES 1 B
FO1 a4 s077_v01 1 0.490 0.040 ES_o_E
FO1 a4 s077 _v01 1 0.530 0.010 ES_a 7 S
FO1 a4 s077 v01 1 0.540 0.010 FR aa B
FO1 a4 s077 v01 1 0.550 0.040 FR tt I
FO1 a4 s077 v01 1 0.590 0.030 FR an I
FO1_a4 s077 v01 1 0.620 0.020 FR dd I
FO01 a4 s077 v0l1 1 0.640 0.010 FR an E
FO1 a4 s077 _v0l1 1 0.650 0.010 ES_ n B
FO1 a4 s077 _v0l1 1 0.660 0.010 ES_o_E
FO1 a4 s077 v0l1 1 0.670 0.010 ES_e B
FO1 a4 s077 v01 1 0.680 0.010 ES n E
FO1 a4 s077 v01 1 0.690 0.030 ES_t B

Figure 6: Example input to a code-switching evaluation.

a block of French phones and determine that the language
had switched. The time stamps from the third column of
this ctm file would be returned, along with the prediction
for the new language - in this case, French.

In addition to making the neural network smaller
to improve language identification and code-switching
detection performance, the architecture of the network
could also be dramatically altered by replacing the TDNN
model with a simple feedforward network and softmax.
This version would implement language identification
not by reading prepended symbols, but by direct classifi-
cation. The disadvantage of this approach is that it would
not be as useful for code-switching detection applications
as the original approach, since it would process whole ut-
terances at a time and would therefore lack granularity to
determine if a language switch has happened in the mid-
dle of the utterance. Nevertheless, alternate schemes for
language ID should be investigated to see if they are in-
deed more computationally efficient and accurate.

6. Conclusion

At the outset of this study, a successful language identi-
fication system was defined as one that would achieve an
error rate of less than 10%. Only the most recent state-of-
the-art deep learning methods have managed to achieve
this level of accuracy. Although the approach used here
did not achieve that benchmark for every language, it did
have greater-than-random accuracy in detecting all four
languages. This is encouraging, because it suggests that
the approach set out here is valid and simply needs to
be fine-tuned. In subsequent work the author will in-
deed fine-tune this method to improve language iden-
tification precision to the greatest extent possible. Us-
ing a greater volume of speech data in training, perhaps
sourced from the multilingual LibriVox or TedX corpora,



would likely improve performance [26,27]]. Interestingly,
it was anticipated that languages with close linguistic re-
lationships might lead to difficulties in distinguishing be-
tween several candidate languages. The evidence shown
in this paper regarding the mistaken prediction of French
phonemes to be Spanish is precisely the expected sce-
nario. More generally, the accuracy of the approach here
will always likely be higher for some languages than oth-
ers due to a variety of factors, including phonetic simi-
larity between languages and variation in the quality of
the recordings. Indeed, the mix of languages provided in
the closed-set for language identification will also likely
make a difference: a closet-set of entirely Romance lan-
guages would likely have poor performance compared to
a closed-set of distant languages. Various aspects of the
approach laid out here will continue to be adjusted in or-
der to eliminate biases and amplify linguistic differences
so as to achieve the highest accuracy possible.
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